program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.1.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0b1"}})] { func main(tensor x) { tensor var_6 = const()[name = tensor("op_6"), val = tensor(true)]; tensor var_9 = const()[name = tensor("op_9"), val = tensor(1)]; tensor x_eps_interleave_0 = const()[name = tensor("x_eps_interleave_0"), val = tensor(false)]; tensor eps_chan_to_fp16 = const()[name = tensor("eps_chan_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor x_eps_cast_fp16 = concat(axis = var_9, interleave = x_eps_interleave_0, values = (x, eps_chan_to_fp16))[name = tensor("x_eps_cast_fp16")]; tensor norm_x_axes_0 = const()[name = tensor("norm_x_axes_0"), val = tensor([1])]; tensor norm_x_cast_fp16 = reduce_l2_norm(axes = norm_x_axes_0, keep_dims = var_6, x = x_eps_cast_fp16)[name = tensor("norm_x_cast_fp16")]; tensor x_normed_1_cast_fp16 = real_div(x = x, y = norm_x_cast_fp16)[name = tensor("x_normed_1_cast_fp16")]; tensor var_34_to_fp16 = const()[name = tensor("op_34_to_fp16"), val = tensor(0x1.bb8p+5)]; tensor x_normed_3_cast_fp16 = mul(x = x_normed_1_cast_fp16, y = var_34_to_fp16)[name = tensor("x_normed_3_cast_fp16")]; tensor ln_f_weight_to_fp16 = const()[name = tensor("ln_f_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(256)))]; tensor x_5_cast_fp16 = mul(x = x_normed_3_cast_fp16, y = ln_f_weight_to_fp16)[name = tensor("x_5_cast_fp16")]; tensor var_48 = const()[name = tensor("op_48"), val = tensor([1, 3072, 1, -1])]; tensor x_cast_fp16 = reshape(shape = var_48, x = x_5_cast_fp16)[name = tensor("x_cast_fp16")]; tensor var_51_axes_0 = const()[name = tensor("op_51_axes_0"), val = tensor([2])]; tensor var_51_cast_fp16 = squeeze(axes = var_51_axes_0, x = x_cast_fp16)[name = tensor("op_51_cast_fp16")]; tensor var_54_perm_0 = const()[name = tensor("op_54_perm_0"), val = tensor([0, 2, 1])]; tensor concat_4 = const()[name = tensor("concat_4"), val = tensor([64, 3072])]; tensor var_54_cast_fp16 = transpose(perm = var_54_perm_0, x = var_51_cast_fp16)[name = tensor("transpose_16")]; tensor reshape_0_cast_fp16 = reshape(shape = concat_4, x = var_54_cast_fp16)[name = tensor("reshape_0_cast_fp16")]; tensor matmul_0_transpose_x_0 = const()[name = tensor("matmul_0_transpose_x_0"), val = tensor(false)]; tensor matmul_0_transpose_y_0 = const()[name = tensor("matmul_0_transpose_y_0"), val = tensor(false)]; tensor transpose_1_to_fp16 = const()[name = tensor("transpose_1_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6464)))]; tensor matmul_0_cast_fp16 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_1_to_fp16)[name = tensor("matmul_0_cast_fp16")]; tensor concat_8 = const()[name = tensor("concat_8"), val = tensor([1, 64, 16384])]; tensor logits_0 = reshape(shape = concat_8, x = matmul_0_cast_fp16)[name = tensor("reshape_2_cast_fp16")]; tensor matmul_1_transpose_x_0 = const()[name = tensor("matmul_1_transpose_x_0"), val = tensor(false)]; tensor matmul_1_transpose_y_0 = const()[name = tensor("matmul_1_transpose_y_0"), val = tensor(false)]; tensor transpose_3_to_fp16 = const()[name = tensor("transpose_3_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(100669824)))]; tensor matmul_1_cast_fp16 = matmul(transpose_x = matmul_1_transpose_x_0, transpose_y = matmul_1_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_3_to_fp16)[name = tensor("matmul_1_cast_fp16")]; tensor concat_16 = const()[name = tensor("concat_16"), val = tensor([1, 64, 16384])]; tensor logits_1 = reshape(shape = concat_16, x = matmul_1_cast_fp16)[name = tensor("reshape_5_cast_fp16")]; tensor matmul_2_transpose_x_0 = const()[name = tensor("matmul_2_transpose_x_0"), val = tensor(false)]; tensor matmul_2_transpose_y_0 = const()[name = tensor("matmul_2_transpose_y_0"), val = tensor(false)]; tensor transpose_5_to_fp16 = const()[name = tensor("transpose_5_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(201333184)))]; tensor matmul_2_cast_fp16 = matmul(transpose_x = matmul_2_transpose_x_0, transpose_y = matmul_2_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_5_to_fp16)[name = tensor("matmul_2_cast_fp16")]; tensor concat_24 = const()[name = tensor("concat_24"), val = tensor([1, 64, 16384])]; tensor logits_2 = reshape(shape = concat_24, x = matmul_2_cast_fp16)[name = tensor("reshape_8_cast_fp16")]; tensor matmul_3_transpose_x_0 = const()[name = tensor("matmul_3_transpose_x_0"), val = tensor(false)]; tensor matmul_3_transpose_y_0 = const()[name = tensor("matmul_3_transpose_y_0"), val = tensor(false)]; tensor transpose_7_to_fp16 = const()[name = tensor("transpose_7_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(301996544)))]; tensor matmul_3_cast_fp16 = matmul(transpose_x = matmul_3_transpose_x_0, transpose_y = matmul_3_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_7_to_fp16)[name = tensor("matmul_3_cast_fp16")]; tensor concat_32 = const()[name = tensor("concat_32"), val = tensor([1, 64, 16384])]; tensor logits_3 = reshape(shape = concat_32, x = matmul_3_cast_fp16)[name = tensor("reshape_11_cast_fp16")]; tensor matmul_4_transpose_x_0 = const()[name = tensor("matmul_4_transpose_x_0"), val = tensor(false)]; tensor matmul_4_transpose_y_0 = const()[name = tensor("matmul_4_transpose_y_0"), val = tensor(false)]; tensor transpose_9_to_fp16 = const()[name = tensor("transpose_9_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(402659904)))]; tensor matmul_4_cast_fp16 = matmul(transpose_x = matmul_4_transpose_x_0, transpose_y = matmul_4_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_9_to_fp16)[name = tensor("matmul_4_cast_fp16")]; tensor concat_40 = const()[name = tensor("concat_40"), val = tensor([1, 64, 16384])]; tensor logits_4 = reshape(shape = concat_40, x = matmul_4_cast_fp16)[name = tensor("reshape_14_cast_fp16")]; tensor matmul_5_transpose_x_0 = const()[name = tensor("matmul_5_transpose_x_0"), val = tensor(false)]; tensor matmul_5_transpose_y_0 = const()[name = tensor("matmul_5_transpose_y_0"), val = tensor(false)]; tensor transpose_11_to_fp16 = const()[name = tensor("transpose_11_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(503323264)))]; tensor matmul_5_cast_fp16 = matmul(transpose_x = matmul_5_transpose_x_0, transpose_y = matmul_5_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_11_to_fp16)[name = tensor("matmul_5_cast_fp16")]; tensor concat_48 = const()[name = tensor("concat_48"), val = tensor([1, 64, 16384])]; tensor logits_5 = reshape(shape = concat_48, x = matmul_5_cast_fp16)[name = tensor("reshape_17_cast_fp16")]; tensor matmul_6_transpose_x_0 = const()[name = tensor("matmul_6_transpose_x_0"), val = tensor(false)]; tensor matmul_6_transpose_y_0 = const()[name = tensor("matmul_6_transpose_y_0"), val = tensor(false)]; tensor transpose_13_to_fp16 = const()[name = tensor("transpose_13_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(603986624)))]; tensor matmul_6_cast_fp16 = matmul(transpose_x = matmul_6_transpose_x_0, transpose_y = matmul_6_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_13_to_fp16)[name = tensor("matmul_6_cast_fp16")]; tensor concat_56 = const()[name = tensor("concat_56"), val = tensor([1, 64, 16384])]; tensor logits_6 = reshape(shape = concat_56, x = matmul_6_cast_fp16)[name = tensor("reshape_20_cast_fp16")]; tensor matmul_7_transpose_x_0 = const()[name = tensor("matmul_7_transpose_x_0"), val = tensor(false)]; tensor matmul_7_transpose_y_0 = const()[name = tensor("matmul_7_transpose_y_0"), val = tensor(false)]; tensor transpose_15_to_fp16 = const()[name = tensor("transpose_15_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(704649984)))]; tensor matmul_7_cast_fp16 = matmul(transpose_x = matmul_7_transpose_x_0, transpose_y = matmul_7_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_15_to_fp16)[name = tensor("matmul_7_cast_fp16")]; tensor concat_64 = const()[name = tensor("concat_64"), val = tensor([1, 64, 13568])]; tensor logits_7 = reshape(shape = concat_64, x = matmul_7_cast_fp16)[name = tensor("reshape_23_cast_fp16")]; } -> (logits_0, logits_1, logits_2, logits_3, logits_4, logits_5, logits_6, logits_7); }