--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama-chat tags: - axolotl - generated_from_trainer model-index: - name: 5467a23f-cea4-4597-bce0-a6ecf396de83 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/tinyllama-chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f22e1082b8aa906a_train_data.json ds_type: json format: custom path: /workspace/input_data/f22e1082b8aa906a_train_data.json type: field_instruction: prompt field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: sn56m2/5467a23f-cea4-4597-bce0-a6ecf396de83 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f22e1082b8aa906a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: 9asx wandb_runid: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 5467a23f-cea4-4597-bce0-a6ecf396de83 This model is a fine-tuned version of [unsloth/tinyllama-chat](https://huggingface.co/unsloth/tinyllama-chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0044 | 1 | 0.3697 | | 0.2106 | 0.0440 | 10 | 0.2530 | | 0.0676 | 0.0880 | 20 | 0.0561 | | 0.0191 | 0.1320 | 30 | 0.0136 | | 0.0068 | 0.1760 | 40 | 0.0064 | | 0.0062 | 0.2200 | 50 | 0.0057 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1