File size: 3,261 Bytes
fe8ef6e
 
 
 
 
cea2eaf
 
 
fe8ef6e
 
 
 
 
 
 
 
 
 
 
cea2eaf
fe8ef6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: other
base_model: facebook/mask2former-swin-tiny-coco-instance
tags:
- image-segmentation
- instance-segmentation
- vision
- generated_from_trainer
model-index:
- name: finetune-instance-segmentation-ade20k-mini-mask2former
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune-instance-segmentation-ade20k-mini-mask2former

This model is a fine-tuned version of [facebook/mask2former-swin-tiny-coco-instance](https://huggingface.co/facebook/mask2former-swin-tiny-coco-instance) on the qubvel-hf/ade20k-mini dataset.
It achieves the following results on the evaluation set:
- Loss: 28.4481
- Map: 0.2172
- Map 50: 0.4234
- Map 75: 0.2041
- Map Small: 0.1458
- Map Medium: 0.6353
- Map Large: 0.8076
- Mar 1: 0.0953
- Mar 10: 0.254
- Mar 100: 0.2903
- Mar Small: 0.2169
- Mar Medium: 0.7113
- Mar Large: 0.8594
- Map Person: 0.1476
- Mar 100 Person: 0.205
- Map Car: 0.2867
- Mar 100 Car: 0.3755

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 4.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Person | Mar 100 Person | Map Car | Mar 100 Car |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------:|:--------------:|:-------:|:-----------:|
| 33.5412       | 1.0   | 100  | 31.5328         | 0.1929 | 0.3918 | 0.1737 | 0.1281    | 0.6122     | 0.7895    | 0.0904 | 0.2473 | 0.2836  | 0.2105    | 0.7063     | 0.8229    | 0.13       | 0.2001         | 0.2558  | 0.3672      |
| 27.9471       | 2.0   | 200  | 29.7181         | 0.2053 | 0.4151 | 0.1851 | 0.1387    | 0.6192     | 0.8018    | 0.093  | 0.2507 | 0.2872  | 0.2142    | 0.7079     | 0.8323    | 0.1364     | 0.2029         | 0.2741  | 0.3714      |
| 26.4855       | 3.0   | 300  | 28.9786         | 0.2134 | 0.4219 | 0.1945 | 0.1451    | 0.6255     | 0.8047    | 0.0944 | 0.2543 | 0.2918  | 0.2198    | 0.7045     | 0.8594    | 0.143      | 0.2059         | 0.2837  | 0.3777      |
| 25.4746       | 4.0   | 400  | 28.4481         | 0.2172 | 0.4234 | 0.2041 | 0.1458    | 0.6353     | 0.8076    | 0.0953 | 0.254  | 0.2903  | 0.2169    | 0.7113     | 0.8594    | 0.1476     | 0.205          | 0.2867  | 0.3755      |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.0+cu121
- Datasets 2.19.1
- Tokenizers 0.21.0