File size: 4,429 Bytes
abaa90e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resultsfinalgerman
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resultsfinalgerman

This model is a fine-tuned version of [padmalcom/wav2vec2-large-emotion-detection-german](https://huggingface.co/padmalcom/wav2vec2-large-emotion-detection-german) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6302
- Accuracy: 0.6429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7053        | 1.0   | 13   | 0.6971          | 0.3571   |
| 0.6994        | 2.0   | 26   | 0.6930          | 0.5714   |
| 0.686         | 3.0   | 39   | 0.6891          | 0.5714   |
| 0.6759        | 4.0   | 52   | 0.6889          | 0.5714   |
| 0.6865        | 5.0   | 65   | 0.6870          | 0.5714   |
| 0.6916        | 6.0   | 78   | 0.6847          | 0.5714   |
| 0.6764        | 7.0   | 91   | 0.6854          | 0.5714   |
| 0.6768        | 8.0   | 104  | 0.6869          | 0.5714   |
| 0.6546        | 9.0   | 117  | 0.6882          | 0.5714   |
| 0.6806        | 10.0  | 130  | 0.6875          | 0.5714   |
| 0.6742        | 11.0  | 143  | 0.6893          | 0.5714   |
| 0.6675        | 12.0  | 156  | 0.6897          | 0.5714   |
| 0.6762        | 13.0  | 169  | 0.6903          | 0.5714   |
| 0.6451        | 14.0  | 182  | 0.6920          | 0.5714   |
| 0.6641        | 15.0  | 195  | 0.6928          | 0.5714   |
| 0.634         | 16.0  | 208  | 0.6974          | 0.5714   |
| 0.6342        | 17.0  | 221  | 0.6983          | 0.5714   |
| 0.6526        | 18.0  | 234  | 0.6992          | 0.5714   |
| 0.6498        | 19.0  | 247  | 0.6926          | 0.5714   |
| 0.6293        | 20.0  | 260  | 0.6842          | 0.5714   |
| 0.5946        | 21.0  | 273  | 0.6833          | 0.5714   |
| 0.6281        | 22.0  | 286  | 0.6761          | 0.5      |
| 0.6084        | 23.0  | 299  | 0.6748          | 0.5      |
| 0.6055        | 24.0  | 312  | 0.6655          | 0.5      |
| 0.5806        | 25.0  | 325  | 0.6670          | 0.7143   |
| 0.62          | 26.0  | 338  | 0.6550          | 0.5714   |
| 0.5741        | 27.0  | 351  | 0.6578          | 0.7143   |
| 0.6261        | 28.0  | 364  | 0.6675          | 0.6429   |
| 0.5069        | 29.0  | 377  | 0.6661          | 0.6429   |
| 0.5526        | 30.0  | 390  | 0.6602          | 0.6429   |
| 0.5145        | 31.0  | 403  | 0.6545          | 0.6429   |
| 0.5634        | 32.0  | 416  | 0.6553          | 0.6429   |
| 0.4619        | 33.0  | 429  | 0.6493          | 0.6429   |
| 0.5694        | 34.0  | 442  | 0.6487          | 0.6429   |
| 0.5045        | 35.0  | 455  | 0.6436          | 0.6429   |
| 0.4623        | 36.0  | 468  | 0.6448          | 0.6429   |
| 0.5001        | 37.0  | 481  | 0.6465          | 0.6429   |
| 0.4779        | 38.0  | 494  | 0.6439          | 0.6429   |
| 0.4751        | 39.0  | 507  | 0.6329          | 0.6429   |
| 0.4426        | 40.0  | 520  | 0.6294          | 0.6429   |
| 0.4341        | 41.0  | 533  | 0.6270          | 0.6429   |
| 0.4282        | 42.0  | 546  | 0.6265          | 0.6429   |
| 0.4908        | 43.0  | 559  | 0.6269          | 0.6429   |
| 0.4073        | 44.0  | 572  | 0.6251          | 0.6429   |
| 0.4207        | 45.0  | 585  | 0.6261          | 0.6429   |
| 0.4757        | 46.0  | 598  | 0.6277          | 0.6429   |
| 0.4357        | 47.0  | 611  | 0.6294          | 0.6429   |
| 0.4473        | 48.0  | 624  | 0.6302          | 0.6429   |
| 0.4047        | 49.0  | 637  | 0.6302          | 0.6429   |
| 0.4881        | 50.0  | 650  | 0.6302          | 0.6429   |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3