snoop088 commited on
Commit
973dd49
1 Parent(s): 570a855

Update README.md

Browse files

initial commit - saving readme
to be continued
![Screenshot 2024-01-03 at 16.08.46.png](https://cdn-uploads.huggingface.co/production/uploads/64857e2b745fb671250a5beb/26EB2jJDKI0gsnvjHA9WP.png)

Files changed (1) hide show
  1. README.md +231 -0
README.md CHANGED
@@ -1,3 +1,234 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ datasets:
4
+ - imdb
5
+ language:
6
+ - en
7
+ metrics:
8
+ - f1
9
+ - accuracy
10
+ - recall
11
+ - precision
12
+ library_name: peft
13
  ---
14
+ # A Finetuned Bloom 1b1 Model for Sequence Classification
15
+
16
+ <!-- Provide a quick summary of what the model is/does. -->
17
+
18
+ The model was developed as a personal learning experience to fine tune a ready language model for Text Classification and to use it
19
+ on real life data from the internet to perform sentiment analysis.
20
+
21
+ It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
22
+
23
+ ## Model Details
24
+
25
+ The model achieves the following scores on the evaluation set during the fine tuning:
26
+
27
+ ![Screenshot 2024-01-03 at 16.08.46.png](https://cdn-uploads.huggingface.co/production/uploads/64857e2b745fb671250a5beb/26EB2jJDKI0gsnvjHA9WP.png)
28
+
29
+ Here is the train/ eval/ test split:
30
+
31
+ ```
32
+ DatasetDict({
33
+ train: Dataset({
34
+ features: ['review', 'sentiment'],
35
+ num_rows: 36000
36
+ })
37
+ test: Dataset({
38
+ features: ['review', 'sentiment'],
39
+ num_rows: 5000
40
+ })
41
+ eval: Dataset({
42
+ features: ['review', 'sentiment'],
43
+ num_rows: 9000
44
+ })
45
+ })
46
+ ```
47
+
48
+ ### Model Description
49
+
50
+ <!-- Provide a longer summary of what this model is. -->
51
+
52
+
53
+
54
+ - **Developed by:** Snoop088
55
+ - **Model type:** Text Classification / Sequence Classification
56
+ - **Language(s) (NLP):** English
57
+ - **License:** Apache 2.0
58
+ - **Finetuned from model: bigscience/bloom-1b1
59
+
60
+ ### Model Sources [optional]
61
+
62
+ <!-- Provide the basic links for the model. -->
63
+
64
+ - **Repository:** [More Information Needed]
65
+ - **Paper [optional]:** [More Information Needed]
66
+ - **Demo [optional]:** [More Information Needed]
67
+
68
+ ## Uses
69
+
70
+ The model is intended to be used for Text Classification.
71
+
72
+ ### Direct Use
73
+
74
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
75
+
76
+ [More Information Needed]
77
+
78
+ ### Downstream Use [optional]
79
+
80
+ The purpose of this model is to be used to perform sentiment analysis on a dataset similar to the one by IMDB. It should work well on product reviews, too in my opinion.
81
+
82
+
83
+ [More Information Needed]
84
+
85
+ ### Out-of-Scope Use
86
+
87
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ## Bias, Risks, and Limitations
92
+
93
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
94
+
95
+ [More Information Needed]
96
+
97
+ ### Recommendations
98
+
99
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
100
+
101
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
102
+
103
+ ## How to Get Started with the Model
104
+
105
+ Use the code below to get started with the model.
106
+
107
+ [More Information Needed]
108
+
109
+ ## Training Details
110
+
111
+ ### Training Data
112
+
113
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
114
+
115
+ [More Information Needed]
116
+
117
+ ### Training Procedure
118
+
119
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
120
+
121
+ #### Preprocessing [optional]
122
+
123
+ [More Information Needed]
124
+
125
+
126
+ #### Training Hyperparameters
127
+
128
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
129
+
130
+ #### Speeds, Sizes, Times [optional]
131
+
132
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
133
+
134
+ [More Information Needed]
135
+
136
+ ## Evaluation
137
+
138
+ <!-- This section describes the evaluation protocols and provides the results. -->
139
+
140
+ ### Testing Data, Factors & Metrics
141
+
142
+ #### Testing Data
143
+
144
+ <!-- This should link to a Dataset Card if possible. -->
145
+
146
+ [More Information Needed]
147
+
148
+ #### Factors
149
+
150
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
151
+
152
+ [More Information Needed]
153
+
154
+ #### Metrics
155
+
156
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
157
+
158
+ [More Information Needed]
159
+
160
+ ### Results
161
+
162
+ [More Information Needed]
163
+
164
+ #### Summary
165
+
166
+
167
+
168
+ ## Model Examination [optional]
169
+
170
+ <!-- Relevant interpretability work for the model goes here -->
171
+
172
+ [More Information Needed]
173
+
174
+ ## Environmental Impact
175
+
176
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
177
+
178
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
179
+
180
+ - **Hardware Type:** [More Information Needed]
181
+ - **Hours used:** [More Information Needed]
182
+ - **Cloud Provider:** [More Information Needed]
183
+ - **Compute Region:** [More Information Needed]
184
+ - **Carbon Emitted:** [More Information Needed]
185
+
186
+ ## Technical Specifications [optional]
187
+
188
+ ### Model Architecture and Objective
189
+
190
+ [More Information Needed]
191
+
192
+ ### Compute Infrastructure
193
+
194
+ [More Information Needed]
195
+
196
+ #### Hardware
197
+
198
+ [More Information Needed]
199
+
200
+ #### Software
201
+
202
+ [More Information Needed]
203
+
204
+ ## Citation [optional]
205
+
206
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
207
+
208
+ **BibTeX:**
209
+
210
+ [More Information Needed]
211
+
212
+ **APA:**
213
+
214
+ [More Information Needed]
215
+
216
+ ## Glossary [optional]
217
+
218
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
219
+
220
+ [More Information Needed]
221
+
222
+ ## More Information [optional]
223
+
224
+ [More Information Needed]
225
+
226
+ ## Model Card Authors [optional]
227
+
228
+ [More Information Needed]
229
+
230
+ ## Model Card Contact
231
+
232
+ [More Information Needed]
233
+
234
+