File size: 3,682 Bytes
01435ff c7e7a9d f662a9f c7e7a9d cea8923 be83a0d c7e7a9d cea8923 138cc0e 68a1b59 be83a0d 2447645 68a1b59 138cc0e f0a3bba be83a0d c7e7a9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
---
<h1>
<a alt="Ask2Democracy project" href="https://github.com/jorge-henao/ask2democracy">Ask2Democracy project</a>
</h1>
<hr>
## What's baizemocracy-lora-7B-cfqa-conv model?
This model is an open-source chat model fine-tuned with [LoRA](https://github.com/microsoft/LoRA) inspired by [Baize project](https://github.com/project-baize/baize-chatbot/tree/main/). It was trained with the Baize datasets and the ask2democracy-cfqa-salud-pension dataset, wich contains almost 4k instructions to answers questions based on a context relevant to citizen concerns and public debate in spanish.
Two major experiments models was performed during the Hackathon Somos NLP 2023:
- A conversational style focused model
- A contex focused style model.
This model is focused in a more conversational way of asking questions. See Pre-proccessing dataset section.
There is other model variation more focused on augmented retrieval based on context [Baizemocracy-contextfocused](https://github.com/project-baize/baize-chatbot/tree/main/).
Testing is a work in progress, we decide to share both model variations with community in order to invovle more people experimenting what it works better and find other possible use cases.
- **Developed by:**
- 🇨🇴 [Jorge Henao](https://huggingface.co/jorge-henao)
- 🇨🇴 [David Torres ](https://github.com/datorresb)
## Training Parameters
- Base Model: [LLaMA-7B](https://arxiv.org/pdf/2302.13971.pdf)
- Training Epoch: 1
- Batch Size: 16
- Maximum Input Length: 512
- Learning Rate: 2e-4
- LoRA Rank: 8
- Updated Modules: All Linears
## Training Dataset
- [Ask2Democracy-cfqa-salud-pension](https://huggingface.co/datasets/hackathon-somos-nlp-2023/ask2democracy-cfqa-salud-pension) (3,806)
- [Standford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) (51,942)
- [Quora Dialogs](https://github.com/project-baize/baize) (54,456):
- [StackOverflow Dialogs](https://github.com/project-baize/baize) (57,046)
- [Alpacaca chat Dialogs](https://github.com/project-baize/baize)
- [Medical chat Dialogs](https://github.com/project-baize/baize)
## About pre-processing
Ask2Democracy-cfqa-salud-pension dataset was pre-processed in a conversational style in two variations like this:
```python
def format_instruction_without_context(example):
example["topic"] = example['input']
input = "La conversación entre un humano y un asistente de IA."
input += "\n[|Human|] "+example['input']
input += "\n[|AI|] "+example["output"]
if len(example["topics"])>0:
topics = ", ".join(example["topics"])
input += "\n[|Human|] "+"¿En cuáles tópicos clasificarías su respuesta?"
input += "\n[|AI|] "+f"Aquí una lista de tópicos: {topics}."
example["topic"] += f" ({topics})"
example["input"] = input
return example`
def format_instruction_with_context(example):
example["topic"] = example['input']
context = example['instruction'].replace("Given the context please answer the question. Context:","")
context = ' '.join(context.strip().split())[1:-3]
input = "La conversación entre un humano y un asistente de IA."
input += "\n[|Human|] "+example['input']+f"\nPara responder la pregunta, usa el siguiente contexto:\n{context}"
input += "\n[|AI|] "+example["output"]
if len(example["topics"])>0:
topics = ", ".join(example["topics"])
input += "\n[|Human|] "+"¿En cuáles tópicos clasificarías su respuesta?"
input += "\n[|AI|] "+f"Aquí una lista de tópicos: {topics}."
example["topic"] += f" ({topics})"
example["input"] = input
return example
```
More details can be found in the Ask2Democracy [GitHub](https://github.com/jorge-henao/ask2democracy) |