--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.79 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7146 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0711 | 1.0 | 75 | 1.9438 | 0.49 | | 1.4944 | 2.0 | 150 | 1.4307 | 0.53 | | 1.2562 | 3.0 | 225 | 1.2180 | 0.65 | | 0.9436 | 4.0 | 300 | 1.0209 | 0.71 | | 0.7543 | 5.0 | 375 | 0.9073 | 0.73 | | 0.5742 | 6.0 | 450 | 0.8047 | 0.75 | | 0.4728 | 7.0 | 525 | 0.7736 | 0.78 | | 0.3622 | 8.0 | 600 | 0.7412 | 0.78 | | 0.2447 | 9.0 | 675 | 0.7117 | 0.79 | | 0.2692 | 10.0 | 750 | 0.7146 | 0.79 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0