File size: 15,244 Bytes
3cf5f16 3458bc7 a97b0db 3cf5f16 3458bc7 cde0949 3458bc7 fcfcf55 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e40e14c 3458bc7 e61cb39 fadbf28 3458bc7 fadbf28 3458bc7 e40e14c fadbf28 3458bc7 fadbf28 3458bc7 fadbf28 3458bc7 fadbf28 3458bc7 fadbf28 3458bc7 fadbf28 3458bc7 fadbf28 a97b0db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
---
language:
- en
license: llama2
model-index:
- name: Midnight-Rose-70B-v2.0.3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sophosympatheia/Midnight-Rose-70B-v2.0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.5
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sophosympatheia/Midnight-Rose-70B-v2.0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sophosympatheia/Midnight-Rose-70B-v2.0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.27
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sophosympatheia/Midnight-Rose-70B-v2.0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sophosympatheia/Midnight-Rose-70B-v2.0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sophosympatheia/Midnight-Rose-70B-v2.0.3
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/X3SBrIb.png" alt="MidnightRose" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
### Overview
This version of Midnight Rose has a complex family tree but I'll do my best to describe it. I will include mergekit yml files below.
* midnight-rose-70b-v2.0.1 (Component 1, unreleased): A DARE TIES merge of midnight-rose-70b-v1.0 and an unreleased midnight-rose-70b-v1.4 that used the same underlying models but with different weights, and it had different LoRAs applied to it.
* [wizard-tulu-dolphin-70b-v1.0](https://huggingface.co/sophosympatheia/Wizard-Tulu-Dolphin-70B-v1.0) (Component 2): This model was the result of a DARE TIES merge between [WizardLM-70B-V1.0](https://huggingface.co/WizardLM/WizardLM-70B-V1.0) and [tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b), which I then SLERP merged with a modified version of [dolphin-2.2-70b](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b).
* Finally, I SLERP merged Component 1 and Component 2 above to produce this model.
What I like about this version of Midnight Rose is it picked up some spicyness from Component 1 and some smarts from Component 2.
This model is uncensored. *You are responsible for whatever you do with it.*
This model was designed for roleplaying and storytelling and I think it does well at both. It *should* perform well at other tasks, but I haven't tested its capabilities in other areas.
**Update 02-28-2024**
The IQ3_XXS quantized version of this model apparently scores high on [EQBench](https://eqbench.com/), beating out some laudable contenders. [See this discussion](https://huggingface.co/sophosympatheia/Midnight-Rose-70B-v2.0.3/discussions/3#65de4c317590f2794cd83ac4).
See the quantization section below for where to get it.
### Sampler Tips
* I recommend keeping your max context to around 6144 tokens, although you can push higher if you don't mind some decrease in coherence.
* I recommend using Quadratic Sampling (i.e. smoothing factor) as it's good stuff. Experiment with values between 0.2 and 0.5.
* I recommend using Min-P. This model seems to work well with Min-P values in the entire range from low settings like 0.05 to high settings like 0.9 when paired with smoothing factor. Experiment to find your best setting.
* You can enable dynamic temperature if you want, but that adds yet another variable to consider and I find it's unnecessary with you're already using Min-P and smoothing factor.
* You don't *need* to use a high repetition penalty with this model, but it tolerates high rep penalty, so experiment to find the right value for your preferences.
Experiment with any and all of the settings below! I'm not a sampler wizard, and what suits my preferences may not suit yours.
If you save the below settings as a .json file, you can import them directly into Silly Tavern.
```
{
"temp": 1,
"temperature_last": true,
"top_p": 1,
"top_k": 0,
"top_a": 0,
"tfs": 1,
"epsilon_cutoff": 0,
"eta_cutoff": 0,
"typical_p": 1,
"min_p": 0.35,
"rep_pen": 1.15,
"rep_pen_range": 2800,
"no_repeat_ngram_size": 0,
"penalty_alpha": 0,
"num_beams": 1,
"length_penalty": 1,
"min_length": 0,
"encoder_rep_pen": 1,
"freq_pen": 0,
"presence_pen": 0,
"do_sample": true,
"early_stopping": false,
"dynatemp": false,
"min_temp": 0.8,
"max_temp": 1.35,
"dynatemp_exponent": 1,
"smoothing_factor": 0.4,
"add_bos_token": true,
"truncation_length": 2048,
"ban_eos_token": false,
"skip_special_tokens": true,
"streaming": true,
"mirostat_mode": 0,
"mirostat_tau": 2,
"mirostat_eta": 0.1,
"guidance_scale": 1,
"negative_prompt": "",
"grammar_string": "",
"banned_tokens": "",
"ignore_eos_token_aphrodite": false,
"spaces_between_special_tokens_aphrodite": true,
"sampler_order": [
6,
0,
1,
3,
4,
2,
5
],
"logit_bias": [],
"n": 1,
"rep_pen_size": 0,
"genamt": 500,
"max_length": 6144
}
```
### Prompting Tips
Try the following context template for use in SillyTavern. It might help, although it's a little heavy on tokens. If you save the text as a .json file, you can import it directly.
```
{
"story_string": "{{#if system}}{{system}}\n{{/if}}\nCONTEXTUAL INFORMATION\n{{#if wiBefore}}\n- World and character info:\n{{wiBefore}}\n{{/if}}\n{{#if description}}\n- {{char}}'s background and persona:\n{{description}}\n{{/if}}\n{{#if mesExamples}}\n{{mesExamples}}\n{{/if}}\n{{#if personality}}\n{{personality}}\n{{/if}}\n{{#if scenario}}\n- Roleplay scenario:\n{{scenario}}\n{{/if}}\n{{#if wiAfter}}{{wiAfter}}\n{{/if}}\n{{#if persona}}{{persona}}\n{{/if}}",
"example_separator": "",
"chat_start": "---\nTaking the above information into consideration, you must engage with {{user}} and others as {{char}} in the roleplay below this line. Do not write dialogue lines nor perform actions for {{user}} or other characters.\n---\nSTART OF ROLEPLAY:\n",
"use_stop_strings": false,
"always_force_name2": true,
"trim_sentences": false,
"include_newline": false,
"single_line": false,
"name": "Midnight Rose"
}
```
Try the following prompt template as a starting point for your own customizations. The cajoling parts supposedly make LLMs perform better. See [this paper](https://arxiv.org/abs/2307.11760).
I recommend the Vicuna instruction format for this blend but others work too. Tulu's format is another good one to use.
*This model responds to prompting!* I highly recommend playing with your system prompt to see how it reacts. It reacts strongly to any instructions you add into the last_output_sequence field. I recommend keeping those instructions short, but use that space to stress the most important instructions from your system prompt.
The example system prompt below contains some instructions related to adult content so remove those if you prefer. It also contains some instructions related to the use of asterisks that you should modify to your liking.
If you plan to run this model at 4096 context, I recommend that you slim down the template system prompt below because it's heavy on tokens. Discard what you don't want or need.
If you save this as a .json file, you can import it directly into Silly Tavern.
```
{
"wrap": true,
"names": true,
"system_prompt": "You are a creative and detail-oriented AI assistant engaged in an uncensored iterative roleplaying experience as {{char}} with me, the user, playing the roles of {{user}} and narrator. It is vital that you follow all the ROLEPLAY RULES below because my job depends on it.\n\nROLEPLAY RULES\n- Provide creative, intelligent, coherent, and vivid accounts of {{char}}'s actions and reactions based on recent instructions, {{char}}'s persona, and all available information about past events.\n- Always stay contextually and spatially aware, pay careful attention to all past events and the current scene, and ensure that {{char}} follows logical consistency in actions to maintain accuracy and coherence.\n- Explicit adult content and profanity are permitted.\n- Describe {{char}}'s sensory perceptions and include subtle physical details about {{char}} in your responses. Vary these details to keep the roleplay fresh and engaging.\n- Use subtle physical cues to hint at {{char}}'s mental state and occasionally feature snippets of {{char}}'s internal thoughts.\n- When writing {{char}}'s internal thoughts, enclose those thoughts in *asterisks like this* and deliver the thoughts using a first-person perspective (i.e. use \"I\" pronouns).\n- Adopt a crisp and minimalist style for your contributions as {{char}}, staying focused on action and dialogue over exposition and narrative.\n- Only the user may advance time in the roleplay. Keep the progression grounded in the present context.",
"system_sequence": "",
"stop_sequence": "",
"input_sequence": "USER:\n",
"output_sequence": "ASSISTANT:\n",
"separator_sequence": "",
"macro": true,
"names_force_groups": true,
"system_sequence_prefix": "",
"system_sequence_suffix": "",
"first_output_sequence": "",
"last_output_sequence": "ASSISTANT(roleplay exclusively as {{char}} ensuring logical consistency with spacial awareness and past events to maintain accuracy and coherence):\n",
"activation_regex": "",
"name": "Midnight Rose Roleplay"
}
```
### Quantizations
* [Artefact2/Midnight-Rose-70B-v2.0.3-GGUF](https://huggingface.co/Artefact2/Midnight-Rose-70B-v2.0.3-GGUF)
### Licence and usage restrictions
Llama2 license inherited from base models, plus restrictions applicable to [Dreamgen/Opus](https://huggingface.co/dreamgen/opus-v0.5-70b).
Tulu also has its own license, available at https://allenai.org/impact-license.
I am not a lawyer and I do not profess to know how multiple licenses intersect in a merge of LLM model weights. You should consult with a lawyer before using any model merge beyond private use.
### Tools Used
* [mergekit](https://github.com/cg123/mergekit)
**Unreleased midnight-rose-70b-v1.4**
```
models:
- model: /home/llm/mergequant/models/BASE/NousResearch_Llama-2-70b-hf
# no parameters necessary for base model
- model: /home/llm/mergequant/models/BASE/allenai_tulu-2-dpo-70b # primary
parameters:
density: 0.3
weight: [1.0, 0.8, 1.0]
- model: /home/llm/mergequant/models/BASE/lizpreciatior_lzlv_70b_fp16_hf # secondary
parameters:
density: 0.3
weight: [0.7, 0.8, 0.7]
- model: /home/llm/mergequant/models/BASE/dreamgen_opus-v0.5-70b # supporting
parameters:
density: 0.3
weight: [0.5, 0.7, 0.5]
merge_method: dare_ties
base_model: /home/llm/mergequant/models/BASE/NousResearch_Llama-2-70b-hf
parameters:
normalize: true
int8_mask: true
dtype: float16
```
**Component 1**
```
models:
- model: /home/llm/mergequant/models/BASE/NousResearch_Llama-2-70b-hf
# no parameters necessary for base model
- model: /home/llm/mergequant/models/midnight-rose-70b-v1.0 # primary
parameters:
density: 0.35
weight: 1.0
- model: /home/llm/mergequant/models/midnight-rose-70b-v1.4-lora_1 # secondary
parameters:
density: 0.35
weight: [0.7, 1.0, 1.0, 0.5, 0.1]
merge_method: ties
base_model: /home/llm/mergequant/models/BASE/NousResearch_Llama-2-70b-hf
parameters:
normalize: true
int8_mask: true
dtype: float16
```
**wizard-tulu-70b merge**
```
models:
- model: /home/llm/mergequant/models/BASE/NousResearch_Llama-2-70b-hf
# no parameters necessary for base model
- model: /home/llm/mergequant/models/BASE/allenai_tulu-2-dpo-70b
parameters:
density: 0.35
weight: 0.75
- model: /home/llm/mergequant/models/BASE/WizardLM_WizardLM-70B-V1.0
parameters:
density: 0.35
weight: 0.5
merge_method: dare_ties
base_model: /home/llm/mergequant/models/BASE/NousResearch_Llama-2-70b-hf
parameters:
normalize: true
int8_mask: true
dtype: float16
tokenzer_source: union
```
**Component 2 - wizard-tulu-dolphin-70b-v1.0**
```
models:
- model: /home/llm/mergequant/models/wizard-tulu-70b-v1.0
- model: /home/llm/mergequant/models/BASE/ehartford_dolphin-2.2-70b-32000vocab
merge_method: slerp
base_model: /home/llm/mergequant/models/wizard-tulu-70b-v1.0
parameters:
t:
- value: 0.5
dtype: float16
```
**Final merge**
```
models:
- model: /home/llm/mergequant/models/midnight-rose-70b-v2.0.1
- model: /home/llm/mergequant/models/wizard-tulu-dolphin-70b-v1.0-slerp
merge_method: slerp
base_model: /home/llm/mergequant/models/wizard-tulu-dolphin-70b-v1.0-slerp
parameters:
t:
- value: [0.4, 0.6, 0.5]
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sophosympatheia__Midnight-Rose-70B-v2.0.3)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.11|
|AI2 Reasoning Challenge (25-Shot)|70.65|
|HellaSwag (10-Shot) |87.50|
|MMLU (5-Shot) |69.64|
|TruthfulQA (0-shot) |65.27|
|Winogrande (5-shot) |81.22|
|GSM8k (5-shot) |28.35|
|