import sys __import__('pysqlite3') sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') import streamlit as st from llama_index.core import VectorStoreIndex from llama_index.llms.gemini import Gemini from llama_index.core import StorageContext from dotenv import load_dotenv from llama_index.core import SimpleDirectoryReader import os from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.vector_stores.chroma import ChromaVectorStore import chromadb load_dotenv() GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en") loader = SimpleDirectoryReader(input_dir=".", required_exts=[".pdf"]) documents = loader.load_data() llm = Gemini(api_key=GOOGLE_API_KEY) db = chromadb.PersistentClient(path="./chroma_db") chroma_collection = db.get_or_create_collection("quickstart") vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context, embed_model=embed_model ) query_engine = index.as_query_engine(llm=llm) def perform_query(query): response = query_engine.query(query) return response st.title("Specialization Week FAQ Query System") query_input = st.text_input("Enter your query:") if st.button("Search"): if query_input: response = perform_query(query_input) st.write("Response:") st.write(response.response) else: st.write("Please enter a query.")