|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
import gradio as gr |
|
import torch |
|
|
|
if torch.cuda.is_available(): |
|
tokenizer = AutoTokenizer.from_pretrained("ai-forever/mGPT-13B") |
|
model = AutoModelForCausalLM.from_pretrained("ai-forever/mGPT-13B", load_in_8bit=True, device_map="auto") |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
@spaces.GPU(duration=600) |
|
def predict(prompt, temperature, max_length): |
|
return pipe(prompt, temperature=temperature, max_length=max_length, top_p=0.95, top_k=50, do_sample=True)[0]["generated_text"] |
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
title="mGPT-13B Demo", |
|
inputs=["text", gr.Slider(minimum=0.01, maximum=1.0, value=0.7, label="temperature"), gr.Slider(minimum=1, maximum=1024, value=50, label="max_length")], |
|
outputs=["text"], |
|
) |
|
|
|
demo.launch() |