Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import os | |
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel | |
from transformers import T5EncoderModel | |
from diffusers.utils import export_to_video, load_image #, PIL_INTERPOLATION | |
import gradio as gr | |
import numpy as np | |
import random | |
from PIL import Image | |
import imageio.v3 | |
torch.backends.cuda.matmul.allow_tf32 = False | |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False | |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False | |
torch.backends.cudnn.allow_tf32 = False | |
torch.backends.cudnn.deterministic = False | |
torch.backends.cudnn.benchmark = False | |
#torch.backends.cuda.preferred_blas_library="cublas" | |
#torch.backends.cuda.preferred_linalg_library="cusolver" | |
torch.set_float32_matmul_precision("highest") | |
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
MAX_SEED = np.iinfo(np.int64).max | |
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.1.safetensors" | |
pipe = LTXImageToVideoPipeline.from_pretrained( | |
"Lightricks/LTX-Video", | |
token=HF_TOKEN, | |
transformer=None, | |
text_encoder=None, | |
).to(torch.device("cuda"),torch.bfloat16) | |
text_encoder = T5EncoderModel.from_pretrained("Lightricks/LTX-Video",subfolder='text_encoder',token=True).to(torch.device("cuda"),torch.bfloat16) | |
transformer = LTXVideoTransformer3DModel.from_single_file(single_file_url,token=HF_TOKEN).to(torch.device("cuda"),torch.bfloat16) | |
def generate_video( | |
image_url, | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_frames, | |
guidance_scale, | |
num_inference_steps, | |
fps, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
pipe.text_encoder=text_encoder | |
pipe.transformer=transformer | |
seed=random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image = Image.open(image_url).convert("RGB") | |
image.resize((height,width), Image.LANCZOS) | |
video = pipe( | |
image=image, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
num_frames=num_frames, | |
frame_rate=fps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
num_inference_steps=num_inference_steps, | |
output_type='pt', | |
max_sequence_length=512, | |
).frames | |
video = video[0] | |
video = video.permute(0, 2, 3, 1).cpu().detach().to(torch.float32).numpy() | |
export_to_video(video, "output.mp4", fps=fps) | |
return "output.mp4" | |
iface = gr.Interface( | |
fn=generate_video, | |
inputs=[ | |
gr.Image(type="filepath", label="Image"), | |
gr.Textbox(lines=2, label="Prompt"), | |
gr.Textbox(lines=2, label="Negative Prompt"), | |
gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Width"), | |
gr.Slider(minimum=256, maximum=1024, step=8, value=704, label="Height"), | |
gr.Slider(minimum=16, maximum=256, step=16, value=111, label="Number of Frames"), | |
gr.Slider(minimum=0.0, maximum=30.0, step=0.01, value=3.8, label="Guidance Scale"), | |
gr.Slider(minimum=1, maximum=100, step=1, value=40, label="Number of Inference Steps"), | |
gr.Slider(minimum=1, maximum=60, step=1, value=25, label="FPS"), | |
], | |
outputs=gr.Video(label="Generated Video"), | |
title="LTX-Video Test D", | |
description="Generate video from image with LTX-Video.", | |
) | |
iface.launch() |