1inkusFace commited on
Commit
c495cce
·
verified ·
1 Parent(s): da4a635

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -89,7 +89,7 @@ tokenizer_1 = CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_c
89
  tokenizer_2 = CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer_2', token=True)
90
  scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='scheduler', token=True)
91
  vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
92
- unet = UNet2DConditionModel.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, subfolder='unet', token=True)
93
 
94
  def load_and_prepare_model():
95
  pipe = StableDiffusionXLPipeline.from_pretrained(
@@ -204,7 +204,7 @@ def generate_30(
204
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
205
  batch_options = options.copy()
206
  rv_image = pipe(**batch_options).images[0]
207
- sd_image_path = f"rv50_B_{timestamp}.png"
208
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
209
  upload_to_ftp(sd_image_path)
210
  unique_name = str(uuid.uuid4()) + ".png"
@@ -246,7 +246,7 @@ def generate_60(
246
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
247
  batch_options = options.copy()
248
  rv_image = pipe(**batch_options).images[0]
249
- sd_image_path = f"rv50_B_{timestamp}.png"
250
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
251
  upload_to_ftp(sd_image_path)
252
  unique_name = str(uuid.uuid4()) + ".png"
@@ -288,7 +288,7 @@ def generate_90(
288
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
289
  batch_options = options.copy()
290
  rv_image = pipe(**batch_options).images[0]
291
- sd_image_path = f"rv50_B_{timestamp}.png"
292
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
293
  upload_to_ftp(sd_image_path)
294
  unique_name = str(uuid.uuid4()) + ".png"
 
89
  tokenizer_2 = CLIPTokenizer.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='tokenizer_2', token=True)
90
  scheduler = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', low_cpu_mem_usage=False, subfolder='scheduler', token=True)
91
  vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", low_cpu_mem_usage=False, safety_checker=None, use_safetensors=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
92
+ unet = UNet2DConditionModel.from_pretrained("ford442/RealVisXL_V5.0_BF16", low_cpu_mem_usage=False, subfolder='unet', token=True)
93
 
94
  def load_and_prepare_model():
95
  pipe = StableDiffusionXLPipeline.from_pretrained(
 
204
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
205
  batch_options = options.copy()
206
  rv_image = pipe(**batch_options).images[0]
207
+ sd_image_path = f"rv50_G_{timestamp}.png"
208
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
209
  upload_to_ftp(sd_image_path)
210
  unique_name = str(uuid.uuid4()) + ".png"
 
246
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
247
  batch_options = options.copy()
248
  rv_image = pipe(**batch_options).images[0]
249
+ sd_image_path = f"rv50_G_{timestamp}.png"
250
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
251
  upload_to_ftp(sd_image_path)
252
  unique_name = str(uuid.uuid4()) + ".png"
 
288
  uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
289
  batch_options = options.copy()
290
  rv_image = pipe(**batch_options).images[0]
291
+ sd_image_path = f"rv50_G_{timestamp}.png"
292
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
293
  upload_to_ftp(sd_image_path)
294
  unique_name = str(uuid.uuid4()) + ".png"