ford442 commited on
Commit
e0b895f
·
verified ·
1 Parent(s): 9f43fe5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -141,7 +141,8 @@ def load_and_prepare_model(model_id):
141
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
143
  )
144
- pipe.unet=UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='unet').to(torch.bfloat16)
 
145
  #pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
146
  pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
147
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
@@ -161,7 +162,7 @@ def load_and_prepare_model(model_id):
161
 
162
  #apply_hidiffusion(pipe)
163
 
164
- #pipe.unet.set_default_attn_processor()
165
  pipe.vae.set_default_attn_processor()
166
 
167
  print(f'Pipeline: ')
@@ -219,7 +220,7 @@ def uploadNote():
219
  f.write(f"Use Model Dtype: no \n")
220
  f.write(f"Model Scheduler: Euler_a custom before cuda \n")
221
  f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
222
- f.write(f"Model UNET: default ford442/RealVisXL_V5.0_FP64 to bfloat before cuda\n")
223
  f.write(f"Model HiDiffusion OFF \n")
224
  f.write(f"Model do_resize OFF \n")
225
  upload_to_ftp(filename)
 
141
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
143
  )
144
+ #pipe.unet=UNet2DConditionModel.from_pretrained('ford442/RealVisXL_V5.0_FP64',subfolder='unet').to(torch.bfloat16)
145
+ #pipe.unet=UNet2DConditionModel.from_pretrained('SG161222/RealVisXL_V5.0',subfolder='unet').to(torch.bfloat16)
146
  #pipe.vae = AsymmetricAutoencoderKL.from_pretrained('cross-attention/asymmetric-autoencoder-kl-x-2').to(torch.bfloat16) # ,use_safetensors=True FAILS
147
  pipe.vae = AutoencoderKL.from_pretrained('ford442/Juggernaut-XI-v11-fp32',subfolder='vae').to(torch.bfloat16) # ,use_safetensors=True FAILS
148
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
 
162
 
163
  #apply_hidiffusion(pipe)
164
 
165
+ pipe.unet.set_default_attn_processor()
166
  pipe.vae.set_default_attn_processor()
167
 
168
  print(f'Pipeline: ')
 
220
  f.write(f"Use Model Dtype: no \n")
221
  f.write(f"Model Scheduler: Euler_a custom before cuda \n")
222
  f.write(f"Model VAE: juggernaut to bfloat before cuda then attn_proc \n")
223
+ f.write(f"Model UNET: default to bfloat before cuda then attn_proc \n")
224
  f.write(f"Model HiDiffusion OFF \n")
225
  f.write(f"Model do_resize OFF \n")
226
  upload_to_ftp(filename)