Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -275,7 +275,7 @@ def captioning(img):
|
|
275 |
'''
|
276 |
generated_ids = model5.generate(
|
277 |
**inputsa,
|
278 |
-
|
279 |
num_beams=1,
|
280 |
max_length=128,
|
281 |
min_length=64,
|
@@ -284,7 +284,6 @@ def captioning(img):
|
|
284 |
length_penalty=2.0,
|
285 |
temperature=0.5,
|
286 |
)
|
287 |
-
|
288 |
|
289 |
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
290 |
generated_text = generated_text.replace(cap_prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
|
@@ -296,7 +295,7 @@ def captioning(img):
|
|
296 |
#with torch.no_grad():
|
297 |
generated_ids = model5.generate(
|
298 |
**inputs,
|
299 |
-
|
300 |
num_beams=1,
|
301 |
max_length=64,
|
302 |
#min_length=16,
|
@@ -316,7 +315,7 @@ def captioning(img):
|
|
316 |
).to('cuda')
|
317 |
generated_ids = model5.generate(
|
318 |
**inputf,
|
319 |
-
|
320 |
num_beams=1,
|
321 |
max_length=96,
|
322 |
min_length=64,
|
@@ -427,35 +426,35 @@ def generate_30(
|
|
427 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
428 |
if latent_file is not None: # Check if a latent file is provided
|
429 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
430 |
-
sd_image_a.resize((
|
431 |
#sd_image_a.resize((height,width), Image.LANCZOS)
|
432 |
caption=[]
|
433 |
caption.append(captioning(sd_image_a))
|
434 |
if latent_file_2 is not None: # Check if a latent file is provided
|
435 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
436 |
#sd_image_b.resize((height,width), Image.LANCZOS)
|
437 |
-
sd_image_b.resize((
|
438 |
caption.append(captioning(sd_image_b))
|
439 |
else:
|
440 |
sd_image_b = None
|
441 |
if latent_file_3 is not None: # Check if a latent file is provided
|
442 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
443 |
#sd_image_c.resize((height,width), Image.LANCZOS)
|
444 |
-
sd_image_c.resize((
|
445 |
caption.append(captioning(sd_image_c))
|
446 |
else:
|
447 |
sd_image_c = None
|
448 |
if latent_file_4 is not None: # Check if a latent file is provided
|
449 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
450 |
#sd_image_d.resize((height,width), Image.LANCZOS)
|
451 |
-
sd_image_d.resize((
|
452 |
caption.append(captioning(sd_image_d))
|
453 |
else:
|
454 |
sd_image_d = None
|
455 |
if latent_file_5 is not None: # Check if a latent file is provided
|
456 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
457 |
#sd_image_e.resize((height,width), Image.LANCZOS)
|
458 |
-
sd_image_e.resize((
|
459 |
caption.append(captioning(sd_image_e))
|
460 |
else:
|
461 |
sd_image_e = None
|
|
|
275 |
'''
|
276 |
generated_ids = model5.generate(
|
277 |
**inputsa,
|
278 |
+
text_decoding_method == "Nucleus sampling",
|
279 |
num_beams=1,
|
280 |
max_length=128,
|
281 |
min_length=64,
|
|
|
284 |
length_penalty=2.0,
|
285 |
temperature=0.5,
|
286 |
)
|
|
|
287 |
|
288 |
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
289 |
generated_text = generated_text.replace(cap_prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
|
|
|
295 |
#with torch.no_grad():
|
296 |
generated_ids = model5.generate(
|
297 |
**inputs,
|
298 |
+
text_decoding_method == "Nucleus sampling",
|
299 |
num_beams=1,
|
300 |
max_length=64,
|
301 |
#min_length=16,
|
|
|
315 |
).to('cuda')
|
316 |
generated_ids = model5.generate(
|
317 |
**inputf,
|
318 |
+
text_decoding_method == "Nucleus sampling",
|
319 |
num_beams=1,
|
320 |
max_length=96,
|
321 |
min_length=64,
|
|
|
426 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
427 |
if latent_file is not None: # Check if a latent file is provided
|
428 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
429 |
+
sd_image_a.resize((768,768), Image.LANCZOS)
|
430 |
#sd_image_a.resize((height,width), Image.LANCZOS)
|
431 |
caption=[]
|
432 |
caption.append(captioning(sd_image_a))
|
433 |
if latent_file_2 is not None: # Check if a latent file is provided
|
434 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
435 |
#sd_image_b.resize((height,width), Image.LANCZOS)
|
436 |
+
sd_image_b.resize((768,768), Image.LANCZOS)
|
437 |
caption.append(captioning(sd_image_b))
|
438 |
else:
|
439 |
sd_image_b = None
|
440 |
if latent_file_3 is not None: # Check if a latent file is provided
|
441 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
442 |
#sd_image_c.resize((height,width), Image.LANCZOS)
|
443 |
+
sd_image_c.resize((768,768), Image.LANCZOS)
|
444 |
caption.append(captioning(sd_image_c))
|
445 |
else:
|
446 |
sd_image_c = None
|
447 |
if latent_file_4 is not None: # Check if a latent file is provided
|
448 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
449 |
#sd_image_d.resize((height,width), Image.LANCZOS)
|
450 |
+
sd_image_d.resize((768,768), Image.LANCZOS)
|
451 |
caption.append(captioning(sd_image_d))
|
452 |
else:
|
453 |
sd_image_d = None
|
454 |
if latent_file_5 is not None: # Check if a latent file is provided
|
455 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
456 |
#sd_image_e.resize((height,width), Image.LANCZOS)
|
457 |
+
sd_image_e.resize((768,768), Image.LANCZOS)
|
458 |
caption.append(captioning(sd_image_e))
|
459 |
else:
|
460 |
sd_image_e = None
|