Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -274,7 +274,7 @@ def generate_30(
|
|
274 |
guidance_scale: float = 4,
|
275 |
num_inference_steps: int = 125,
|
276 |
randomize_seed: bool = False,
|
277 |
-
latent_file =
|
278 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
279 |
):
|
280 |
#torch.backends.cudnn.benchmark = False
|
@@ -286,12 +286,7 @@ def generate_30(
|
|
286 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
287 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
288 |
if latent_file is not None: # Check if a latent file is provided
|
289 |
-
|
290 |
-
image = Image.fromarray(latent_file)
|
291 |
-
image = image.resize((width, height)) # Example resize, adjust as needed
|
292 |
-
image = image.convert("RGB") # Ensure it's a 3-channel image
|
293 |
-
image = np.array(image)
|
294 |
-
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
295 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
296 |
filename= f'rv_IP_{timestamp}.txt'
|
297 |
print("-- using image file --")
|
@@ -332,7 +327,7 @@ def generate_60(
|
|
332 |
guidance_scale: float = 4,
|
333 |
num_inference_steps: int = 250,
|
334 |
randomize_seed: bool = False,
|
335 |
-
latent_file =
|
336 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
337 |
):
|
338 |
#torch.backends.cudnn.benchmark = True
|
@@ -344,12 +339,7 @@ def generate_60(
|
|
344 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
345 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
346 |
if latent_file is not None: # Check if a latent file is provided
|
347 |
-
|
348 |
-
image = Image.fromarray(latent_file)
|
349 |
-
image = image.resize((width, height)) # Example resize, adjust as needed
|
350 |
-
image = image.convert("RGB") # Ensure it's a 3-channel image
|
351 |
-
image = np.array(image)
|
352 |
-
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
353 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
354 |
filename= f'rv_IP_{timestamp}.txt'
|
355 |
print("-- using image file --")
|
@@ -390,7 +380,7 @@ def generate_90(
|
|
390 |
guidance_scale: float = 4,
|
391 |
num_inference_steps: int = 250,
|
392 |
randomize_seed: bool = False,
|
393 |
-
latent_file =
|
394 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
395 |
):
|
396 |
#torch.backends.cudnn.benchmark = True
|
@@ -402,12 +392,7 @@ def generate_90(
|
|
402 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
403 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
404 |
if latent_file is not None: # Check if a latent file is provided
|
405 |
-
|
406 |
-
image = Image.fromarray(latent_file)
|
407 |
-
image = image.resize((width, height)) # Example resize, adjust as needed
|
408 |
-
image = image.convert("RGB") # Ensure it's a 3-channel image
|
409 |
-
image = np.array(image)
|
410 |
-
sd_image_a = torch.from_numpy(image).permute(2, 0, 1) / 127.5 - 1.0 # Normalize
|
411 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
412 |
filename= f'rv_IP_{timestamp}.txt'
|
413 |
print("-- using image file --")
|
@@ -480,7 +465,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
480 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
481 |
|
482 |
with gr.Row():
|
483 |
-
latent_file = gr.
|
484 |
style_selection = gr.Radio(
|
485 |
show_label=True,
|
486 |
container=True,
|
|
|
274 |
guidance_scale: float = 4,
|
275 |
num_inference_steps: int = 125,
|
276 |
randomize_seed: bool = False,
|
277 |
+
latent_file = gr.File(), # Add latents file input
|
278 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
279 |
):
|
280 |
#torch.backends.cudnn.benchmark = False
|
|
|
286 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
287 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
288 |
if latent_file is not None: # Check if a latent file is provided
|
289 |
+
sd_image_a = Image.open(latent_file.name)
|
|
|
|
|
|
|
|
|
|
|
290 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
291 |
filename= f'rv_IP_{timestamp}.txt'
|
292 |
print("-- using image file --")
|
|
|
327 |
guidance_scale: float = 4,
|
328 |
num_inference_steps: int = 250,
|
329 |
randomize_seed: bool = False,
|
330 |
+
latent_file = gr.File(), # Add latents file input
|
331 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
332 |
):
|
333 |
#torch.backends.cudnn.benchmark = True
|
|
|
339 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
340 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
341 |
if latent_file is not None: # Check if a latent file is provided
|
342 |
+
sd_image_a = Image.open(latent_file.name)
|
|
|
|
|
|
|
|
|
|
|
343 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
344 |
filename= f'rv_IP_{timestamp}.txt'
|
345 |
print("-- using image file --")
|
|
|
380 |
guidance_scale: float = 4,
|
381 |
num_inference_steps: int = 250,
|
382 |
randomize_seed: bool = False,
|
383 |
+
latent_file = gr.File(), # Add latents file input
|
384 |
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
385 |
):
|
386 |
#torch.backends.cudnn.benchmark = True
|
|
|
392 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
393 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
394 |
if latent_file is not None: # Check if a latent file is provided
|
395 |
+
sd_image_a = Image.open(latent_file.name)
|
|
|
|
|
|
|
|
|
|
|
396 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
397 |
filename= f'rv_IP_{timestamp}.txt'
|
398 |
print("-- using image file --")
|
|
|
465 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
466 |
|
467 |
with gr.Row():
|
468 |
+
latent_file = gr.File(label="Image Prompt (Required)")
|
469 |
style_selection = gr.Radio(
|
470 |
show_label=True,
|
471 |
container=True,
|