Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -98,15 +98,12 @@ def load_and_prepare_model(model_id):
|
|
98 |
torch_dtype=torch.bfloat16,
|
99 |
use_safetensors=True,
|
100 |
add_watermarker=False,
|
101 |
-
)
|
102 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
103 |
|
104 |
if USE_TORCH_COMPILE:
|
105 |
pipe.compile()
|
106 |
|
107 |
-
if ENABLE_CPU_OFFLOAD:
|
108 |
-
pipe.enable_model_cpu_offload()
|
109 |
-
|
110 |
return pipe
|
111 |
|
112 |
# Preload and compile both models
|
@@ -124,7 +121,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
124 |
seed = random.randint(0, MAX_SEED)
|
125 |
return seed
|
126 |
|
127 |
-
@spaces.GPU(duration=
|
128 |
def generate(
|
129 |
model_choice: str,
|
130 |
prompt: str,
|
@@ -143,7 +140,57 @@ def generate(
|
|
143 |
):
|
144 |
global models
|
145 |
pipe = models[model_choice]
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
148 |
generator = torch.Generator(device=device).manual_seed(seed)
|
149 |
|
@@ -215,6 +262,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
215 |
container=False,
|
216 |
)
|
217 |
run_button = gr.Button("Run", scale=0)
|
|
|
218 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
219 |
|
220 |
with gr.Row():
|
@@ -328,6 +376,29 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
328 |
outputs=[result, seed],
|
329 |
)
|
330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
gr.Markdown("### REALVISXL V5.0")
|
332 |
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
|
333 |
|
|
|
98 |
torch_dtype=torch.bfloat16,
|
99 |
use_safetensors=True,
|
100 |
add_watermarker=False,
|
101 |
+
)
|
102 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
103 |
|
104 |
if USE_TORCH_COMPILE:
|
105 |
pipe.compile()
|
106 |
|
|
|
|
|
|
|
107 |
return pipe
|
108 |
|
109 |
# Preload and compile both models
|
|
|
121 |
seed = random.randint(0, MAX_SEED)
|
122 |
return seed
|
123 |
|
124 |
+
@spaces.GPU(duration=70, enable_queue=True)
|
125 |
def generate(
|
126 |
model_choice: str,
|
127 |
prompt: str,
|
|
|
140 |
):
|
141 |
global models
|
142 |
pipe = models[model_choice]
|
143 |
+
pipe.to("cuda:0")
|
144 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
145 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
146 |
+
|
147 |
+
prompt, negative_prompt = apply_style(style_selection, prompt, negative_prompt)
|
148 |
+
|
149 |
+
options = {
|
150 |
+
"prompt": [prompt] * num_images,
|
151 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
152 |
+
"width": width,
|
153 |
+
"height": height,
|
154 |
+
"guidance_scale": guidance_scale,
|
155 |
+
"num_inference_steps": num_inference_steps,
|
156 |
+
"generator": generator,
|
157 |
+
"output_type": "pil",
|
158 |
+
}
|
159 |
+
|
160 |
+
if use_resolution_binning:
|
161 |
+
options["use_resolution_binning"] = True
|
162 |
+
|
163 |
+
images = []
|
164 |
+
for i in range(0, num_images, BATCH_SIZE):
|
165 |
+
batch_options = options.copy()
|
166 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
167 |
+
if "negative_prompt" in batch_options:
|
168 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
169 |
+
images.extend(pipe(**batch_options).images)
|
170 |
+
|
171 |
+
image_paths = [save_image(img) for img in images]
|
172 |
+
return image_paths, seed
|
173 |
+
|
174 |
+
def generate_cpu(
|
175 |
+
model_choice: str,
|
176 |
+
prompt: str,
|
177 |
+
negative_prompt: str = "",
|
178 |
+
use_negative_prompt: bool = False,
|
179 |
+
style_selection: str = DEFAULT_STYLE_NAME,
|
180 |
+
seed: int = 1,
|
181 |
+
width: int = 768,
|
182 |
+
height: int = 768,
|
183 |
+
guidance_scale: float = 4,
|
184 |
+
num_inference_steps: int = 150,
|
185 |
+
randomize_seed: bool = False,
|
186 |
+
use_resolution_binning: bool = True,
|
187 |
+
num_images: int = 1,
|
188 |
+
progress=gr.Progress(track_tqdm=True),
|
189 |
+
):
|
190 |
+
global models
|
191 |
+
pipe = models[model_choice]
|
192 |
+
pipe.to("cpu")
|
193 |
+
|
194 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
195 |
generator = torch.Generator(device=device).manual_seed(seed)
|
196 |
|
|
|
262 |
container=False,
|
263 |
)
|
264 |
run_button = gr.Button("Run", scale=0)
|
265 |
+
cpu_run_button = gr.Button("CPU Run", scale=0)
|
266 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
267 |
|
268 |
with gr.Row():
|
|
|
376 |
outputs=[result, seed],
|
377 |
)
|
378 |
|
379 |
+
gr.on(
|
380 |
+
triggers=[
|
381 |
+
cpu_run_button.click,
|
382 |
+
],
|
383 |
+
api_name="generate", # Add this line
|
384 |
+
fn=generate_cpu,
|
385 |
+
inputs=[
|
386 |
+
model_choice,
|
387 |
+
prompt,
|
388 |
+
negative_prompt,
|
389 |
+
use_negative_prompt,
|
390 |
+
style_selection,
|
391 |
+
seed,
|
392 |
+
width,
|
393 |
+
height,
|
394 |
+
guidance_scale,
|
395 |
+
num_inference_steps,
|
396 |
+
randomize_seed,
|
397 |
+
num_images,
|
398 |
+
],
|
399 |
+
outputs=[result, seed],
|
400 |
+
)
|
401 |
+
|
402 |
gr.Markdown("### REALVISXL V5.0")
|
403 |
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
|
404 |
|