ford442 commited on
Commit
cc298b6
·
1 Parent(s): 56c5b38

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -8
app.py CHANGED
@@ -116,7 +116,7 @@ def load_and_prepare_model(model_id):
116
  #sched = EulerAncestralDiscreteScheduler()
117
  #sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
118
  # sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
119
- pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",use_safetensors=True).to(torch.bfloat16)
120
 
121
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
122
  pipe = StableDiffusionXLPipeline.from_pretrained(
@@ -131,19 +131,18 @@ def load_and_prepare_model(model_id):
131
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
132
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
133
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
134
- #vae=vae,
135
- # unet=pipeX.unet,
136
- scheduler = sched
137
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
138
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
139
  )
140
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
141
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #pipe.to('cuda')
143
- pipe.watermark=None
144
- pipe.safety_checker=None
145
  #pipe.scheduler = sched
146
- pipe.unet=pipeX.unet
147
  # pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
148
  #pipe.to(dtype=torch.bfloat16)
149
  #pipe.unet = pipeX.unet
@@ -154,7 +153,14 @@ def load_and_prepare_model(model_id):
154
  pipe.to(torch.bfloat16)
155
 
156
  #pipe.to(torch.bfloat16)
157
-
 
 
 
 
 
 
 
158
  #pipe.to(torch.device("cuda:0"))
159
  #pipe.vae.to(torch.bfloat16)
160
  #pipe.to(device, torch.bfloat16)
 
116
  #sched = EulerAncestralDiscreteScheduler()
117
  #sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
118
  # sched = EulerAncestralDiscreteScheduler.from_config('ford442/RealVisXL_V5.0_BF16', beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
119
+ pipeX = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V5.0",use_safetensors=True)
120
 
121
  #pipeX = StableDiffusionXLPipeline.from_pretrained("ford442/Juggernaut-XI-v11-fp32",use_safetensors=True)
122
  pipe = StableDiffusionXLPipeline.from_pretrained(
 
131
  # vae=AutoencoderKL.from_pretrained("BeastHF/MyBack_SDXL_Juggernaut_XL_VAE/MyBack_SDXL_Juggernaut_XL_VAE_V10(version_X).safetensors",repo_type='model',safety_checker=None),
132
  # vae=AutoencoderKL.from_pretrained("stabilityai/sdxl-vae",repo_type='model',safety_checker=None, torch_dtype=torch.float32),
133
  # vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16",repo_type='model',safety_checker=None),
134
+ vae=vae,
135
+ unet=pipeX.unet,
136
+ scheduler = sched,
137
  # scheduler = EulerAncestralDiscreteScheduler.from_config(pipeX.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
138
  #scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset =1)
139
  )
140
  #sched = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear",use_karras_sigmas=True, algorithm_type="dpmsolver++")
141
  #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1)
142
  #pipe.to('cuda')
143
+
 
144
  #pipe.scheduler = sched
145
+ #pipe.unet=pipeX.unet
146
  # pipe.scheduler=EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
147
  #pipe.to(dtype=torch.bfloat16)
148
  #pipe.unet = pipeX.unet
 
153
  pipe.to(torch.bfloat16)
154
 
155
  #pipe.to(torch.bfloat16)
156
+ print(f'Pipeline: ')
157
+ print(f'_optional_components: {pipe._optional_components} ')
158
+ print(f'watermark: {pipe.watermark} ')
159
+ print(f'safety_checker: {pipe.safety_checker)
160
+ print(f'final_image_processor: {pipe.final_image_processor}')
161
+ print(f'feature_extractor: {pipe.feature_extractor}')
162
+ pipe.watermark=None
163
+ pipe.safety_checker=None
164
  #pipe.to(torch.device("cuda:0"))
165
  #pipe.vae.to(torch.bfloat16)
166
  #pipe.to(device, torch.bfloat16)