1inkusFace commited on
Commit
4f376ed
·
verified ·
1 Parent(s): ab2c286

Update pipeline_stable_diffusion_3_ipa.py

Browse files
Files changed (1) hide show
  1. pipeline_stable_diffusion_3_ipa.py +8 -7
pipeline_stable_diffusion_3_ipa.py CHANGED
@@ -1142,10 +1142,11 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
1142
  image_prompt_embeds_list = []
1143
 
1144
  # 3. prepare clip emb
1145
- clip_image = clip_image.resize((max(clip_image.size), max(clip_image.size)))
1146
- clip_image_embeds_1 = self.encode_clip_image_emb(clip_image, device, dtype)
1147
- image_prompt_embeds_list.append(clip_image_embeds_1)
1148
-
 
1149
  if clip_image_2 != None:
1150
  print('Using secondary image.')
1151
  clip_image_2 = clip_image_2.resize((max(clip_image.size), max(clip_image.size)))
@@ -1187,11 +1188,11 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
1187
  linear_layer.to('cuda')
1188
  '''
1189
  # Pass the concatenated embeddings through the linear layer
1190
- combined_embeds = linear_layer(concatenated_embeds)
1191
 
1192
  # Add a ReLU activation for non-linearity (optional)
1193
- combined_embeds = torch.relu(combined_embeds)
1194
- clip_image_embeds = combined_embeds #torch.cat(image_prompt_embeds_list).mean(dim=0).unsqueeze(0)
1195
 
1196
  # 4. Prepare timesteps
1197
  timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
 
1142
  image_prompt_embeds_list = []
1143
 
1144
  # 3. prepare clip emb
1145
+ if clip_image != None:
1146
+ print('Using primary image.')
1147
+ clip_image = clip_image.resize((max(clip_image.size), max(clip_image.size)))
1148
+ clip_image_embeds_1 = self.encode_clip_image_emb(clip_image, device, dtype)
1149
+ image_prompt_embeds_list.append(clip_image_embeds_1)
1150
  if clip_image_2 != None:
1151
  print('Using secondary image.')
1152
  clip_image_2 = clip_image_2.resize((max(clip_image.size), max(clip_image.size)))
 
1188
  linear_layer.to('cuda')
1189
  '''
1190
  # Pass the concatenated embeddings through the linear layer
1191
+ clip_image_embeds = linear_layer(concatenated_embeds)
1192
 
1193
  # Add a ReLU activation for non-linearity (optional)
1194
+ #combined_embeds = torch.relu(combined_embeds)
1195
+ #clip_image_embeds = combined_embeds #torch.cat(image_prompt_embeds_list).mean(dim=0).unsqueeze(0)
1196
 
1197
  # 4. Prepare timesteps
1198
  timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)