Spaces:
Running
on
Zero
Running
on
Zero
1inkusFace
commited on
Update pipeline_stable_diffusion_3_ipa.py
Browse files
pipeline_stable_diffusion_3_ipa.py
CHANGED
@@ -1192,7 +1192,15 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
|
|
1192 |
clip_image_embeds_5 = self.image_encoder(clip_image_embeds_5, output_hidden_states=True).hidden_states[-2]
|
1193 |
clip_image_embeds_5 = clip_image_embeds_5 * scale_5
|
1194 |
image_prompt_embeds_list.append(clip_image_embeds_5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1195 |
|
|
|
1196 |
clip_image_embeds_cat_list = torch.cat(image_prompt_embeds_list).mean(dim=0)
|
1197 |
print('catted embeds list with mean: ',clip_image_embeds_cat_list.shape)
|
1198 |
seq_len, _ = clip_image_embeds_cat_list.shape
|
@@ -1204,7 +1212,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
|
|
1204 |
print('zeros: ',zeros_tensor.shape)
|
1205 |
clip_image_embeds = torch.cat([zeros_tensor, clip_image_embeds_view], dim=0)
|
1206 |
print('embeds shape: ', clip_image_embeds.shape)
|
1207 |
-
|
1208 |
# 4. Prepare timesteps
|
1209 |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1210 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
1192 |
clip_image_embeds_5 = self.image_encoder(clip_image_embeds_5, output_hidden_states=True).hidden_states[-2]
|
1193 |
clip_image_embeds_5 = clip_image_embeds_5 * scale_5
|
1194 |
image_prompt_embeds_list.append(clip_image_embeds_5)
|
1195 |
+
|
1196 |
+
# with cat and mean
|
1197 |
+
clip_image_embeds_cat_list = torch.cat(image_prompt_embeds_list)
|
1198 |
+
clip_image_embeds_cat_list = torch.mean(clip_image_embeds_cat_list,dim=0,keepdim=True)
|
1199 |
+
print('catted embeds list: ',clip_image_embeds_cat_list.shape)
|
1200 |
+
zeros_tensor = torch.zeros_like(clip_image_embeds_view)
|
1201 |
+
clip_image_embeds = torch.cat([zeros_tensor, clip_image_embeds_cat_list], dim=1)
|
1202 |
|
1203 |
+
'''
|
1204 |
clip_image_embeds_cat_list = torch.cat(image_prompt_embeds_list).mean(dim=0)
|
1205 |
print('catted embeds list with mean: ',clip_image_embeds_cat_list.shape)
|
1206 |
seq_len, _ = clip_image_embeds_cat_list.shape
|
|
|
1212 |
print('zeros: ',zeros_tensor.shape)
|
1213 |
clip_image_embeds = torch.cat([zeros_tensor, clip_image_embeds_view], dim=0)
|
1214 |
print('embeds shape: ', clip_image_embeds.shape)
|
1215 |
+
'''
|
1216 |
# 4. Prepare timesteps
|
1217 |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1218 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|