1inkusFace commited on
Commit
f289b12
·
verified ·
1 Parent(s): 1669a81

Update pipeline_stable_diffusion_3_ipa.py

Browse files
Files changed (1) hide show
  1. pipeline_stable_diffusion_3_ipa.py +9 -1
pipeline_stable_diffusion_3_ipa.py CHANGED
@@ -1192,7 +1192,15 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
1192
  clip_image_embeds_5 = self.image_encoder(clip_image_embeds_5, output_hidden_states=True).hidden_states[-2]
1193
  clip_image_embeds_5 = clip_image_embeds_5 * scale_5
1194
  image_prompt_embeds_list.append(clip_image_embeds_5)
 
 
 
 
 
 
 
1195
 
 
1196
  clip_image_embeds_cat_list = torch.cat(image_prompt_embeds_list).mean(dim=0)
1197
  print('catted embeds list with mean: ',clip_image_embeds_cat_list.shape)
1198
  seq_len, _ = clip_image_embeds_cat_list.shape
@@ -1204,7 +1212,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
1204
  print('zeros: ',zeros_tensor.shape)
1205
  clip_image_embeds = torch.cat([zeros_tensor, clip_image_embeds_view], dim=0)
1206
  print('embeds shape: ', clip_image_embeds.shape)
1207
-
1208
  # 4. Prepare timesteps
1209
  timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1210
  num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
 
1192
  clip_image_embeds_5 = self.image_encoder(clip_image_embeds_5, output_hidden_states=True).hidden_states[-2]
1193
  clip_image_embeds_5 = clip_image_embeds_5 * scale_5
1194
  image_prompt_embeds_list.append(clip_image_embeds_5)
1195
+
1196
+ # with cat and mean
1197
+ clip_image_embeds_cat_list = torch.cat(image_prompt_embeds_list)
1198
+ clip_image_embeds_cat_list = torch.mean(clip_image_embeds_cat_list,dim=0,keepdim=True)
1199
+ print('catted embeds list: ',clip_image_embeds_cat_list.shape)
1200
+ zeros_tensor = torch.zeros_like(clip_image_embeds_view)
1201
+ clip_image_embeds = torch.cat([zeros_tensor, clip_image_embeds_cat_list], dim=1)
1202
 
1203
+ '''
1204
  clip_image_embeds_cat_list = torch.cat(image_prompt_embeds_list).mean(dim=0)
1205
  print('catted embeds list with mean: ',clip_image_embeds_cat_list.shape)
1206
  seq_len, _ = clip_image_embeds_cat_list.shape
 
1212
  print('zeros: ',zeros_tensor.shape)
1213
  clip_image_embeds = torch.cat([zeros_tensor, clip_image_embeds_view], dim=0)
1214
  print('embeds shape: ', clip_image_embeds.shape)
1215
+ '''
1216
  # 4. Prepare timesteps
1217
  timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1218
  num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)