Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -38,8 +38,6 @@ torch.backends.cudnn.benchmark = False
|
|
38 |
|
39 |
hftoken = os.getenv("HF_TOKEN")
|
40 |
|
41 |
-
#image_encoder_path = "google/siglip-so400m-patch14-384"
|
42 |
-
#image_encoder_path_b = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
43 |
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
44 |
model_path = 'ford442/stable-diffusion-3.5-large-bf16'
|
45 |
|
@@ -82,8 +80,6 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
82 |
|
83 |
pipe.to(device)
|
84 |
|
85 |
-
#pipe.to(device=device, dtype=torch.bfloat16)
|
86 |
-
|
87 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
88 |
|
89 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -99,7 +95,7 @@ def infer(
|
|
99 |
height,
|
100 |
guidance_scale,
|
101 |
num_inference_steps,
|
102 |
-
latent_file,
|
103 |
ip_scale,
|
104 |
image_encoder_path,
|
105 |
progress=gr.Progress(track_tqdm=True),
|
@@ -110,30 +106,20 @@ def infer(
|
|
110 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
111 |
enhanced_prompt = prompt
|
112 |
enhanced_prompt_2 = prompt
|
113 |
-
|
114 |
-
if latent_file: # Check if a latent file is provided
|
115 |
-
# initial_latents = pipe.prepare_latents(
|
116 |
-
# batch_size=1,
|
117 |
-
# num_channels_latents=pipe.transformer.in_channels,
|
118 |
-
# height=pipe.transformer.config.sample_size[0],
|
119 |
-
# width=pipe.transformer.config.sample_size[1],
|
120 |
-
# dtype=pipe.transformer.dtype,
|
121 |
-
# device=pipe.device,
|
122 |
-
# generator=generator,
|
123 |
-
# )
|
124 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
125 |
print("-- using image file and loading ip-adapter --")
|
|
|
126 |
pipe.init_ipadapter(
|
127 |
ip_adapter_path=ipadapter_path,
|
128 |
image_encoder_path=image_encoder_path,
|
129 |
nb_token=64,
|
130 |
)
|
131 |
print('-- generating image --')
|
132 |
-
#with torch.no_grad():
|
133 |
sd_image = pipe(
|
134 |
width=width,
|
135 |
height=height,
|
136 |
-
prompt=enhanced_prompt,
|
137 |
negative_prompt=negative_prompt_1,
|
138 |
num_inference_steps=num_inference_steps,
|
139 |
guidance_scale=guidance_scale,
|
@@ -147,9 +133,8 @@ def infer(
|
|
147 |
upload_to_ftp(rv_path)
|
148 |
else:
|
149 |
print('-- generating image --')
|
150 |
-
#with torch.no_grad():
|
151 |
sd_image = pipe(
|
152 |
-
prompt=prompt,
|
153 |
prompt_2=enhanced_prompt_2,
|
154 |
prompt_3=enhanced_prompt,
|
155 |
negative_prompt=negative_prompt_1,
|
@@ -159,33 +144,14 @@ def infer(
|
|
159 |
num_inference_steps=num_inference_steps,
|
160 |
width=width,
|
161 |
height=height,
|
162 |
-
# latents=None,
|
163 |
-
# output_type='latent',
|
164 |
generator=generator,
|
165 |
max_sequence_length=512
|
166 |
).images[0]
|
167 |
print('-- got image --')
|
168 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
169 |
-
#sd35_image = pipe.vae.decode(sd_image / 0.18215).sample
|
170 |
-
# sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
|
171 |
-
# sd35_image = (sd35_image * 255).round().astype("uint8")
|
172 |
-
# image_pil = Image.fromarray(sd35_image[0])
|
173 |
-
# sd35_path = f"sd35_{seed}.png"
|
174 |
-
# image_pil.save(sd35_path,optimize=False,compress_level=0)
|
175 |
-
# upload_to_ftp(sd35_path)
|
176 |
sd35_path = f"sd35l_{timestamp}.png"
|
177 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
178 |
upload_to_ftp(sd35_path)
|
179 |
-
# Convert the generated image to a tensor
|
180 |
-
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
181 |
-
# Encode the generated image into latents
|
182 |
-
#with torch.no_grad():
|
183 |
-
# generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
184 |
-
#latent_path = f"sd35m_{seed}.pt"
|
185 |
-
# Save the latents to a .pt file
|
186 |
-
#torch.save(generated_latents, latent_path)
|
187 |
-
#upload_to_ftp(latent_path)
|
188 |
-
# pipe.unet.to('cpu')
|
189 |
upscaler_2.to(torch.device('cuda'))
|
190 |
with torch.no_grad():
|
191 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
@@ -214,8 +180,8 @@ body{
|
|
214 |
|
215 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
216 |
with gr.Column(elem_id="col-container"):
|
217 |
-
gr.Markdown(" #
|
218 |
-
expanded_prompt_output = gr.Textbox(label="Prompt", lines=5)
|
219 |
with gr.Row():
|
220 |
prompt = gr.Text(
|
221 |
label="Prompt",
|
@@ -227,7 +193,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
227 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
228 |
result = gr.Image(label="Result", show_label=False)
|
229 |
with gr.Accordion("Advanced Settings", open=True):
|
230 |
-
latent_file = gr.File(label="Image File (optional)")
|
231 |
image_encoder_path = gr.Dropdown(
|
232 |
["google/siglip-so400m-patch14-384", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"],
|
233 |
label="CLIP Model",
|
@@ -266,28 +232,28 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
266 |
minimum=256,
|
267 |
maximum=MAX_IMAGE_SIZE,
|
268 |
step=32,
|
269 |
-
value=768,
|
270 |
)
|
271 |
height = gr.Slider(
|
272 |
label="Height",
|
273 |
minimum=256,
|
274 |
maximum=MAX_IMAGE_SIZE,
|
275 |
step=32,
|
276 |
-
value=768,
|
277 |
)
|
278 |
guidance_scale = gr.Slider(
|
279 |
label="Guidance scale",
|
280 |
minimum=0.0,
|
281 |
maximum=30.0,
|
282 |
step=0.1,
|
283 |
-
value=4.2,
|
284 |
)
|
285 |
num_inference_steps = gr.Slider(
|
286 |
label="Number of inference steps",
|
287 |
minimum=1,
|
288 |
maximum=500,
|
289 |
step=1,
|
290 |
-
value=
|
291 |
)
|
292 |
gr.Examples(examples=examples, inputs=[prompt])
|
293 |
gr.on(
|
@@ -302,7 +268,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
302 |
height,
|
303 |
guidance_scale,
|
304 |
num_inference_steps,
|
305 |
-
latent_file,
|
306 |
ip_scale,
|
307 |
image_encoder_path,
|
308 |
],
|
|
|
38 |
|
39 |
hftoken = os.getenv("HF_TOKEN")
|
40 |
|
|
|
|
|
41 |
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
42 |
model_path = 'ford442/stable-diffusion-3.5-large-bf16'
|
43 |
|
|
|
80 |
|
81 |
pipe.to(device)
|
82 |
|
|
|
|
|
83 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
84 |
|
85 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
95 |
height,
|
96 |
guidance_scale,
|
97 |
num_inference_steps,
|
98 |
+
latent_file,
|
99 |
ip_scale,
|
100 |
image_encoder_path,
|
101 |
progress=gr.Progress(track_tqdm=True),
|
|
|
106 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
107 |
enhanced_prompt = prompt
|
108 |
enhanced_prompt_2 = prompt
|
109 |
+
if latent_file:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
111 |
print("-- using image file and loading ip-adapter --")
|
112 |
+
sd_image_a.resize((height,width), Image.LANCZOS)
|
113 |
pipe.init_ipadapter(
|
114 |
ip_adapter_path=ipadapter_path,
|
115 |
image_encoder_path=image_encoder_path,
|
116 |
nb_token=64,
|
117 |
)
|
118 |
print('-- generating image --')
|
|
|
119 |
sd_image = pipe(
|
120 |
width=width,
|
121 |
height=height,
|
122 |
+
prompt=enhanced_prompt,
|
123 |
negative_prompt=negative_prompt_1,
|
124 |
num_inference_steps=num_inference_steps,
|
125 |
guidance_scale=guidance_scale,
|
|
|
133 |
upload_to_ftp(rv_path)
|
134 |
else:
|
135 |
print('-- generating image --')
|
|
|
136 |
sd_image = pipe(
|
137 |
+
prompt=prompt,
|
138 |
prompt_2=enhanced_prompt_2,
|
139 |
prompt_3=enhanced_prompt,
|
140 |
negative_prompt=negative_prompt_1,
|
|
|
144 |
num_inference_steps=num_inference_steps,
|
145 |
width=width,
|
146 |
height=height,
|
|
|
|
|
147 |
generator=generator,
|
148 |
max_sequence_length=512
|
149 |
).images[0]
|
150 |
print('-- got image --')
|
151 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
sd35_path = f"sd35l_{timestamp}.png"
|
153 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
154 |
upload_to_ftp(sd35_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
upscaler_2.to(torch.device('cuda'))
|
156 |
with torch.no_grad():
|
157 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
|
|
180 |
|
181 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
182 |
with gr.Column(elem_id="col-container"):
|
183 |
+
gr.Markdown(" # StableDiffusion 3.5 Large with IP Adapter")
|
184 |
+
expanded_prompt_output = gr.Textbox(label="Prompt", lines=5)
|
185 |
with gr.Row():
|
186 |
prompt = gr.Text(
|
187 |
label="Prompt",
|
|
|
193 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
194 |
result = gr.Image(label="Result", show_label=False)
|
195 |
with gr.Accordion("Advanced Settings", open=True):
|
196 |
+
latent_file = gr.File(label="Image File (optional)")
|
197 |
image_encoder_path = gr.Dropdown(
|
198 |
["google/siglip-so400m-patch14-384", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"],
|
199 |
label="CLIP Model",
|
|
|
232 |
minimum=256,
|
233 |
maximum=MAX_IMAGE_SIZE,
|
234 |
step=32,
|
235 |
+
value=768,
|
236 |
)
|
237 |
height = gr.Slider(
|
238 |
label="Height",
|
239 |
minimum=256,
|
240 |
maximum=MAX_IMAGE_SIZE,
|
241 |
step=32,
|
242 |
+
value=768,
|
243 |
)
|
244 |
guidance_scale = gr.Slider(
|
245 |
label="Guidance scale",
|
246 |
minimum=0.0,
|
247 |
maximum=30.0,
|
248 |
step=0.1,
|
249 |
+
value=4.2,
|
250 |
)
|
251 |
num_inference_steps = gr.Slider(
|
252 |
label="Number of inference steps",
|
253 |
minimum=1,
|
254 |
maximum=500,
|
255 |
step=1,
|
256 |
+
value=50,
|
257 |
)
|
258 |
gr.Examples(examples=examples, inputs=[prompt])
|
259 |
gr.on(
|
|
|
268 |
height,
|
269 |
guidance_scale,
|
270 |
num_inference_steps,
|
271 |
+
latent_file,
|
272 |
ip_scale,
|
273 |
image_encoder_path,
|
274 |
],
|