24Sureshkumar commited on
Commit
bf7e1be
·
verified ·
1 Parent(s): 9186c84

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -0
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
4
+ from PIL import Image
5
+ import torch
6
+ import io
7
+
8
+ # Check if GPU is available
9
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
+
11
+ # Load Tamil-to-English Translation Model
12
+ translator_model = "Helsinki-NLP/opus-mt-mul-en"
13
+ translator = MarianMTModel.from_pretrained(translator_model).to(device)
14
+ translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
15
+
16
+ # Load Text Generation Model
17
+ generator_model = "EleutherAI/gpt-neo-1.3B"
18
+ generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
19
+ generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
20
+ if generator_tokenizer.pad_token is None:
21
+ generator_tokenizer.pad_token = generator_tokenizer.eos_token
22
+
23
+ # Hugging Face API for Image Generation
24
+ HF_API_KEY = "my_token" # Replace with your API key
25
+ IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
26
+ # Get the API key from environment variables or Hugging Face secrets
27
+ HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
28
+
29
+ def translate_tamil_to_english(text):
30
+ """Translates Tamil text to English."""
31
+ inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
32
+ output = translator.generate(**inputs)
33
+ return translator_tokenizer.decode(output[0], skip_special_tokens=True)
34
+
35
+ def generate_text(prompt):
36
+ """Generates a creative text based on English input."""
37
+ inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
38
+ output = generator.generate(**inputs, max_length=100)
39
+ return generator_tokenizer.decode(output[0], skip_special_tokens=True)
40
+
41
+ def generate_image(prompt):
42
+ """Sends request to API for image generation."""
43
+ response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
44
+ if response.status_code == 200:
45
+ return Image.open(io.BytesIO(response.content))
46
+ return Image.new("RGB", (300, 300), "red") # Error placeholder image
47
+
48
+ def process_input(tamil_text):
49
+ """Complete pipeline: Translation, Text Generation, and Image Generation."""
50
+ english_text = translate_tamil_to_english(tamil_text)
51
+ creative_text = generate_text(english_text)
52
+ image = generate_image(english_text)
53
+ return english_text, creative_text, image
54
+
55
+ # Create Gradio Interface
56
+ interface = gr.Interface(
57
+ fn=process_input,
58
+ inputs=gr.Textbox(label="Enter Tamil Text"),
59
+ outputs=[
60
+ gr.Textbox(label="Translated English Text"),
61
+ gr.Textbox(label="Creative Text"),
62
+ gr.Image(label="Generated Image")
63
+ ],
64
+ title="Tamil to English Translator & Image Generator",
65
+ description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text."
66
+ )
67
+
68
+ # Launch the Gradio app
69
+ interface.launch()