Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import io
|
7 |
+
|
8 |
+
# Check if GPU is available
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
# Load Tamil-to-English Translation Model
|
12 |
+
translator_model = "Helsinki-NLP/opus-mt-mul-en"
|
13 |
+
translator = MarianMTModel.from_pretrained(translator_model).to(device)
|
14 |
+
translator_tokenizer = MarianTokenizer.from_pretrained(translator_model)
|
15 |
+
|
16 |
+
# Load Text Generation Model
|
17 |
+
generator_model = "EleutherAI/gpt-neo-1.3B"
|
18 |
+
generator = AutoModelForCausalLM.from_pretrained(generator_model).to(device)
|
19 |
+
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
|
20 |
+
if generator_tokenizer.pad_token is None:
|
21 |
+
generator_tokenizer.pad_token = generator_tokenizer.eos_token
|
22 |
+
|
23 |
+
# Hugging Face API for Image Generation
|
24 |
+
HF_API_KEY = "my_token" # Replace with your API key
|
25 |
+
IMAGE_GEN_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
|
26 |
+
# Get the API key from environment variables or Hugging Face secrets
|
27 |
+
HEADERS = {"Authorization": f"Bearer {HF_API_KEY}"}
|
28 |
+
|
29 |
+
def translate_tamil_to_english(text):
|
30 |
+
"""Translates Tamil text to English."""
|
31 |
+
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
|
32 |
+
output = translator.generate(**inputs)
|
33 |
+
return translator_tokenizer.decode(output[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
def generate_text(prompt):
|
36 |
+
"""Generates a creative text based on English input."""
|
37 |
+
inputs = generator_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
38 |
+
output = generator.generate(**inputs, max_length=100)
|
39 |
+
return generator_tokenizer.decode(output[0], skip_special_tokens=True)
|
40 |
+
|
41 |
+
def generate_image(prompt):
|
42 |
+
"""Sends request to API for image generation."""
|
43 |
+
response = requests.post(IMAGE_GEN_URL, headers=HEADERS, json={"inputs": prompt})
|
44 |
+
if response.status_code == 200:
|
45 |
+
return Image.open(io.BytesIO(response.content))
|
46 |
+
return Image.new("RGB", (300, 300), "red") # Error placeholder image
|
47 |
+
|
48 |
+
def process_input(tamil_text):
|
49 |
+
"""Complete pipeline: Translation, Text Generation, and Image Generation."""
|
50 |
+
english_text = translate_tamil_to_english(tamil_text)
|
51 |
+
creative_text = generate_text(english_text)
|
52 |
+
image = generate_image(english_text)
|
53 |
+
return english_text, creative_text, image
|
54 |
+
|
55 |
+
# Create Gradio Interface
|
56 |
+
interface = gr.Interface(
|
57 |
+
fn=process_input,
|
58 |
+
inputs=gr.Textbox(label="Enter Tamil Text"),
|
59 |
+
outputs=[
|
60 |
+
gr.Textbox(label="Translated English Text"),
|
61 |
+
gr.Textbox(label="Creative Text"),
|
62 |
+
gr.Image(label="Generated Image")
|
63 |
+
],
|
64 |
+
title="Tamil to English Translator & Image Generator",
|
65 |
+
description="Enter Tamil text, and this app will translate it, generate a creative description, and create an image based on the text."
|
66 |
+
)
|
67 |
+
|
68 |
+
# Launch the Gradio app
|
69 |
+
interface.launch()
|