File size: 1,951 Bytes
1fde3e7
 
7d36cb2
cfb2448
 
1fde3e7
cfb2448
1fde3e7
 
cfb2448
f6e2a55
cfb2448
 
1fde3e7
 
 
 
34b0851
1fde3e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import requests
# from IPython.display import Markdown, display, update_display
# from openai import OpenAI
# from google.colab import drive
from huggingface_hub import login
# from google.colab import userdata
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig
import torch
from dotenv import load_dotenv
import gradio as gr

load_dotenv()


LLAMA = "meta-llama/Meta-Llama-3.1-8B-Instruct"

hf_token = os.environ["HF_TOKEN"]
login(hf_token, add_to_git_credential=True)

system_message = "You are an assistant that produces datasets based on description provided."
user_input = "Film critics of 1900s"
user_prompt = f"Below is the description for which you need to generate dataset.\n{user_input}"

messages = [
    {"role": "system", "content": system_message},
    {"role": "user", "content": user_prompt}
  ]

quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_quant_type="nf4"
)

tokenizer = None
model = None
streamer = None


def run_llama(python):
    if tokenizer is None:
        tokenizer = AutoTokenizer.from_pretrained(LLAMA)
        tokenizer.pad_token = tokenizer.eos_token
    inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
    # streamer = TextStreamer(tokenizer)
    if model is None:
        model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map="auto", quantization_config=quant_config)
    outputs = model.generate(inputs, max_new_tokens=2000, streamer=streamer)
    
    response = tokenizer.decode(outputs[0])
    return response


# Gradio Interface
iface = gr.Interface(
    fn=run_llama,
    inputs=gr.Textbox(label="Enter dataset description"),
    outputs=gr.Markdown(label="Generated Dataset"),
    title="Dataset Generator",
    description="Describe the dataset you want to generate."
)

iface.launch(share=True, debug=True)