Spaces:
Sleeping
Sleeping
File size: 4,791 Bytes
01664b3 5ceacf4 01664b3 20c01c5 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 01664b3 5ceacf4 20c01c5 01664b3 5ceacf4 01664b3 20c01c5 5ceacf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import re
import shutil
import time
from types import SimpleNamespace
from typing import Any
import gradio as gr
import numpy as np
from detectron2 import engine
from PIL import Image
from inference import main, setup_cfg
# internal settings
NUM_PROCESSES = 1
CROP = True
SCORE_THRESHOLD = 0.8
MAX_PARTS = 5
ARGS = SimpleNamespace(
config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
model="../data/models/motion_state_pred_opdformerp_rgb.pth",
input_format="RGB",
output=".output",
cpu=True,
)
outputs = []
def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_samples: int) -> list[Any]:
global outputs
def find_gifs(path: str) -> list[str]:
"""Scrape folders for all generated gif files."""
for file in os.listdir(path):
sub_path = os.path.join(path, file)
if os.path.isdir(sub_path):
for image_file in os.listdir(sub_path):
if re.match(r".*\.gif$", image_file):
yield os.path.join(sub_path, image_file)
def find_images(path: str) -> list[str]:
"""Scrape folders for all generated gif files."""
images = {}
for file in os.listdir(path):
sub_path = os.path.join(path, file)
if os.path.isdir(sub_path):
images[file] = []
for image_file in sorted(os.listdir(sub_path)):
if re.match(r".*\.png$", image_file):
images[file].append(os.path.join(sub_path, image_file))
return images
def get_generator(images):
def gen():
while True:
for im in images:
time.sleep(0.025)
yield im
time.sleep(3)
return gen
# clear old predictions
for path in os.listdir(ARGS.output):
full_path = os.path.join(ARGS.output, path)
if os.path.isdir(full_path):
shutil.rmtree(full_path)
else:
os.remove(full_path)
cfg = setup_cfg(ARGS)
engine.launch(
main,
NUM_PROCESSES,
args=(
cfg,
rgb_image,
depth_image,
intrinsics,
num_samples,
CROP,
SCORE_THRESHOLD,
),
)
# process output
# TODO: may want to select these in decreasing order of score
image_files = find_images(ARGS.output)
output = []
for count, part in enumerate(image_files):
if count < MAX_PARTS:
# output.append(gr.update(value=get_generator([Image.open(im) for im in image_files[part]]), visible=True))
output.append(get_generator([Image.open(im) for im in image_files[part]]))
# while len(output) < MAX_PARTS:
# output.append(gr.update(visible=False))
yield from output[0]()
with gr.Blocks() as demo:
gr.Markdown(
"""
# OPDMulti Demo
Upload an image to see its range of motion.
"""
)
# TODO: add gr.Examples
with gr.Row():
rgb_image = gr.Image(
image_mode="RGB", source="upload", type="filepath", label="RGB Image", show_label=True, interactive=True
)
depth_image = gr.Image(
image_mode="I;16", source="upload", type="filepath", label="Depth Image", show_label=True, interactive=True
)
intrinsics = gr.Dataframe(
value=[
[
214.85935872395834,
0.0,
125.90160319010417,
],
[
0.0,
214.85935872395834,
95.13726399739583,
],
[
0.0,
0.0,
1.0,
],
],
row_count=(3, "fixed"),
col_count=(3, "fixed"),
datatype="number",
type="numpy",
label="Intrinsics matrix",
show_label=True,
interactive=True,
)
num_samples = gr.Number(
value=10,
label="Number of samples",
show_label=True,
interactive=True,
precision=0,
minimum=3,
maximum=20,
)
submit_btn = gr.Button("Run model")
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
# identified.
# images = [gr.Image(type="pil", label=f"Part {idx + 1}", visible=False) for idx in range(MAX_PARTS)]
image = gr.Image(type="pil", visible=True)
# TODO: maybe need to use a queue here so we don't overload the instance
submit_btn.click(
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=image, api_name="run_model"
)
demo.queue(api_open=False)
demo.launch()
|