Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import pdb | |
from typing import Tuple | |
from copy import deepcopy | |
import torch | |
from torch import device, nn | |
from torch.nn import functional as F | |
from detectron2.config import configurable | |
from detectron2.data import MetadataCatalog | |
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head | |
from detectron2.modeling.backbone import Backbone | |
from detectron2.modeling.postprocessing import sem_seg_postprocess | |
from detectron2.structures import Boxes, ImageList, Instances, BitMasks | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from .modeling.criterion import SetCriterion | |
from .modeling.matcher import HungarianMatcher | |
from .utils.tranform import matrix_to_quaternion, quaternion_to_matrix, rotation_6d_to_matrix, matrix_to_rotation_6d, geometric_median | |
from .modeling.criterion import convert_to_filled_tensor | |
import numpy as np | |
class MaskFormer(nn.Module): | |
""" | |
Main class for mask classification semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
criterion: nn.Module, | |
mask2former_backbone: nn.Module, | |
mask2former_sem_seg_head: nn.Module, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# inference | |
semantic_on: bool, | |
panoptic_on: bool, | |
instance_on: bool, | |
test_topk_per_image: int, | |
# OPD | |
motionnet_type, | |
voting, | |
gtdet, | |
inference_matcher, | |
gtextrinsic, | |
only_DET, | |
obj_method | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.mask2former_backbone = mask2former_backbone | |
self.mask2former_sem_seg_head = mask2former_sem_seg_head | |
self.criterion = criterion | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.metadata = metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor( | |
pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor( | |
pixel_std).view(-1, 1, 1), False) | |
# additional args | |
self.semantic_on = semantic_on | |
self.instance_on = instance_on | |
self.panoptic_on = panoptic_on | |
self.test_topk_per_image = test_topk_per_image | |
if not self.semantic_on: | |
assert self.sem_seg_postprocess_before_inference | |
# OPD | |
self.motionnet_type = motionnet_type | |
self.voting = voting | |
self.gtdet = gtdet | |
self.inference_matcher = inference_matcher | |
self.gtextrinsic = gtextrinsic | |
self.only_DET = only_DET | |
self.obj_method = obj_method | |
def from_config(cls, cfg): | |
backbone = build_backbone(cfg) | |
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) | |
# TODO: add mask2former backbone and semseghead to get object mask | |
if cfg.OBJ_DETECT: | |
mask2former_backbone = build_backbone(cfg.MASK2FORMER) | |
mask2former_sem_seg_head = build_sem_seg_head( | |
cfg.MASK2FORMER, backbone.output_shape()) | |
else: | |
mask2former_backbone = None | |
mask2former_sem_seg_head = None | |
# Loss parameters: | |
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION | |
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT | |
# loss weights | |
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT | |
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT | |
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT | |
# OPD | |
mtype_weight = cfg.MODEL.MASK_FORMER.MTYPE_WEIGHT | |
morigin_weight = cfg.MODEL.MASK_FORMER.MORIGIN_WEIGHT | |
maxis_weight = cfg.MODEL.MASK_FORMER.MAXIS_WEIGHT | |
extrinsic_weight = cfg.MODEL.MASK_FORMER.EXTRINSIC_WEIGHT | |
mstate_weight = cfg.MODEL.MASK_FORMER.MSTATE_WEIGHT | |
mstatemax_weight = cfg.MODEL.MASK_FORMER.MSTATEMAX_WEIGHT | |
motionnet_type = cfg.MODEL.MOTIONNET.TYPE | |
# building criterion | |
matcher = HungarianMatcher( | |
cost_class=class_weight, | |
cost_mask=mask_weight, | |
cost_dice=dice_weight, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
) | |
if "GTDET" in cfg.MODEL: | |
gtdet = cfg.MODEL.GTDET | |
else: | |
gtdet = False | |
if "GTEXTRINSIC" in cfg.MODEL: | |
gtextrinsic = cfg.MODEL.GTEXTRINSIC | |
else: | |
gtextrinsic = None | |
if gtdet or gtextrinsic: | |
# This inference matcher is used for GT ablation when inferencing | |
inference_matcher = matcher | |
else: | |
inference_matcher = None | |
if "ONLY_DET" in cfg.MODEL: | |
only_DET = cfg.MODEL.ONLY_DET | |
else: | |
only_DET = False | |
# OPD | |
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight, "loss_mtype": mtype_weight, | |
"loss_morigin": morigin_weight, "loss_maxis": maxis_weight, "loss_mstate": mstate_weight, "loss_mstatemax": mstatemax_weight} | |
if motionnet_type == "BMOC_V1" or motionnet_type == "BMOC_V2" or motionnet_type == "BMOC_V3" or motionnet_type == "BMOC_V4" or motionnet_type == "BMOC_V5" or motionnet_type == "BMOC_V6": | |
weight_dict["loss_extrinsic"] = extrinsic_weight | |
if deep_supervision: | |
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS | |
aux_weight_dict = {} | |
for i in range(dec_layers - 1): | |
aux_weight_dict.update( | |
{k + f"_{i}": v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
# OPD | |
if motionnet_type == "BMOC_V0": | |
weight_dict["loss_extrinsic"] = extrinsic_weight | |
# OPD | |
losses = ["labels", "masks", "mtypes", "morigins", | |
"maxises", "extrinsics", "mstates", "mstatemaxs"] | |
criterion = SetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher, | |
weight_dict=weight_dict, | |
eos_coef=no_object_weight, | |
losses=losses, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO, | |
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, | |
motionnet_type=motionnet_type, | |
only_DET=only_DET, | |
) | |
# OPD | |
if "VOTING" in cfg.MODEL.MOTIONNET: | |
voting = cfg.MODEL.MOTIONNET.VOTING | |
else: | |
voting = None | |
return { | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"mask2former_backbone": mask2former_backbone, | |
"mask2former_sem_seg_head": mask2former_sem_seg_head, | |
"criterion": criterion, | |
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES, | |
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD, | |
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD, | |
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), | |
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY, | |
"sem_seg_postprocess_before_inference": ( | |
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE | |
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON | |
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON | |
), | |
"pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
"pixel_std": cfg.MODEL.PIXEL_STD, | |
# inference | |
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON, | |
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON, | |
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON, | |
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, | |
# OPD | |
"motionnet_type": motionnet_type, | |
"voting": voting, | |
"gtdet": gtdet, | |
"inference_matcher": inference_matcher, | |
"gtextrinsic": gtextrinsic, | |
"only_DET": only_DET, | |
"obj_method": cfg.OBJ_DETECT | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
images = [x["image"].to(self.device) for x in batched_inputs] | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
# Load the targets if it's training or it's in the groundtruth ablation study | |
if self.training or self.gtdet or self.gtextrinsic: | |
# get the grpundtruth | |
if "instances" in batched_inputs[0]: | |
gt_instances = [x["instances"].to( | |
self.device) for x in batched_inputs] | |
targets = self.prepare_targets(gt_instances, images) | |
else: | |
targets = None | |
if not self.obj_method: | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features) | |
else: | |
# TODO: add freezed model to extract object mask. | |
for para in self.mask2former_backbone.parameters(): | |
para.requires_grad = False | |
for para in self.mask2former_sem_seg_head.parameters(): | |
para.requires_grad = False | |
obj_feature = self.mask2former_backbone(images.tensor) | |
obj_output = self.mask2former_sem_seg_head(obj_feature) | |
pred_obj_masks = obj_output["pred_masks"] | |
# prob_masks = torch.sigmoid(pred_obj_masks) | |
pred_cls_results = obj_output["pred_logits"] | |
# TODO: use object prediction to help object pose prediction, find a way to calculate the IoU of part and object mask | |
for indice, pred_obj_mask in enumerate(pred_obj_masks): | |
# get binary mask | |
for idx, mask in enumerate(pred_obj_mask): | |
max_score = torch.max(mask) | |
pred_obj_mask[idx] = (mask > (max_score*0.5)).float() | |
# replace the pred masks with binary masks | |
pred_obj_masks[indice] = pred_obj_mask | |
# import pdb | |
# pdb.set_trace() | |
features = self.backbone(images.tensor) | |
outputs = self.sem_seg_head(features, pred_obj_masks) | |
# import pdb | |
# pdb.set_trace() | |
if self.training: | |
# bipartite matching-based loss | |
losses = self.criterion(outputs, targets) | |
for k in list(losses.keys()): | |
if k in self.criterion.weight_dict: | |
losses[k] *= self.criterion.weight_dict[k] | |
else: | |
# remove this loss if not specified in `weight_dict` | |
print(f"Warning: {k} is not in loss") | |
losses.pop(k) | |
return losses | |
else: | |
mask_cls_results = outputs["pred_logits"] | |
mask_pred_results = outputs["pred_masks"] | |
# OPD | |
mask_mtype_results = outputs["pred_mtypes"] | |
mask_morigin_results = outputs["pred_morigins"] | |
mask_maxis_results = outputs["pred_maxises"] | |
mask_mstate_results = outputs["pred_mstates"] | |
mask_mstatemax_results = outputs["pred_mstatemaxs"] | |
if "BMOC" in self.motionnet_type: | |
mask_extrinsic_results = outputs["pred_extrinsics"] | |
# upsample masks | |
mask_pred_results = F.interpolate( | |
mask_pred_results, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
if self.gtdet or self.gtextrinsic: | |
if self.gtdet: | |
# Make other predictions be bad, so that they will not consider when evaluating | |
mask_pred_results[:, :, :, :] = -30 | |
mask_cls_results[:, :, :3] = 0 | |
mask_cls_results[:, :, 3] = 15 # weight for softmax | |
# Initialize the predicted class and predicted mask to the default value | |
if targets[0]["masks"].shape[0] != 0: | |
outputs_without_aux = { | |
k: v for k, v in outputs.items() if k != "aux_outputs"} | |
# Retrieve the matching between the outputs of the last layer and the targets | |
indices = self.inference_matcher( | |
outputs_without_aux, targets) | |
def _get_src_permutation_idx(indices): | |
# permute predictions following indices | |
batch_idx = torch.cat( | |
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) | |
src_idx = torch.cat([src for (src, _) in indices]) | |
return batch_idx, src_idx | |
def _get_tgt_permutation_idx(indices): | |
# permute targets following indices | |
batch_idx = torch.cat( | |
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) | |
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) | |
return batch_idx, tgt_idx | |
src_idx = _get_src_permutation_idx(indices) | |
tgt_idx = _get_tgt_permutation_idx(indices) | |
if self.gtdet: | |
mask_pred_results[src_idx] = targets[0]["masks"].unsqueeze(0)[ | |
tgt_idx].float() * 30 | |
mask_pred_results[mask_pred_results == 0] = -30 | |
mask_cls_results[src_idx] = F.one_hot( | |
targets[0]["labels"][tgt_idx[1]], num_classes=self.sem_seg_head.num_classes+1).float() * 15 | |
if self.gtextrinsic: | |
if self.motionnet_type == "BMOC_V6": | |
gt_extrinsic_raw = targets[0]["gt_extrinsic"][0] | |
gt_extrinsic = torch.cat( | |
[ | |
gt_extrinsic_raw[0:3], | |
gt_extrinsic_raw[4:7], | |
gt_extrinsic_raw[8:11], | |
gt_extrinsic_raw[12:15], | |
], | |
0, | |
) | |
mask_extrinsic_results[0] = gt_extrinsic | |
else: | |
raise ValueError("Not Implemented") | |
del outputs | |
if "BMOC" in self.motionnet_type: | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, input_per_image, image_size, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, mask_extrinsic_result in zip( | |
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes, mask_mtype_results, mask_morigin_results, mask_maxis_results, mask_mstate_results, mask_mstatemax_results, mask_extrinsic_results | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
if self.sem_seg_postprocess_before_inference: | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
mask_cls_result = mask_cls_result.to(mask_pred_result) | |
# OPD | |
mask_mtype_result = mask_mtype_result.to( | |
mask_pred_result) | |
mask_morigin_result = mask_morigin_result.to( | |
mask_pred_result) | |
mask_maxis_result = mask_maxis_result.to( | |
mask_pred_result) | |
mask_mstate_result = mask_mstate_result.to( | |
mask_pred_result) | |
mask_mstatemax_result = mask_mstatemax_result.to( | |
mask_pred_result) | |
mask_extrinsic_result = mask_extrinsic_result.to( | |
mask_pred_result) | |
# semantic segmentation inference | |
if self.semantic_on: | |
r = retry_if_cuda_oom(self.semantic_inference)( | |
mask_cls_result, mask_pred_result) | |
if not self.sem_seg_postprocess_before_inference: | |
r = retry_if_cuda_oom(sem_seg_postprocess)( | |
r, image_size, height, width) | |
processed_results[-1]["sem_seg"] = r | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)( | |
mask_cls_result, mask_pred_result) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
# instance segmentation inference | |
if self.instance_on: | |
instance_r = retry_if_cuda_oom(self.instance_inference)( | |
mask_cls_result, mask_pred_result, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, mask_extrinsic_result) | |
processed_results[-1]["instances"] = instance_r | |
else: | |
processed_results = [] | |
for mask_cls_result, mask_pred_result, input_per_image, image_size, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result in zip( | |
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes, mask_mtype_results, mask_morigin_results, mask_maxis_results, mask_mstate_results, mask_mstatemax_results | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
processed_results.append({}) | |
if self.sem_seg_postprocess_before_inference: | |
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( | |
mask_pred_result, image_size, height, width | |
) | |
mask_cls_result = mask_cls_result.to(mask_pred_result) | |
# OPD | |
mask_mtype_result = mask_mtype_result.to( | |
mask_pred_result) | |
mask_morigin_result = mask_morigin_result.to( | |
mask_pred_result) | |
mask_maxis_result = mask_maxis_result.to( | |
mask_pred_result) | |
mask_mstate_result = mask_mstate_result.to( | |
mask_pred_result) | |
mask_mstatemax_result = mask_mstatemax_result.to( | |
mask_pred_result) | |
# semantic segmentation inference | |
if self.semantic_on: | |
r = retry_if_cuda_oom(self.semantic_inference)( | |
mask_cls_result, mask_pred_result) | |
if not self.sem_seg_postprocess_before_inference: | |
r = retry_if_cuda_oom(sem_seg_postprocess)( | |
r, image_size, height, width) | |
processed_results[-1]["sem_seg"] = r | |
# panoptic segmentation inference | |
if self.panoptic_on: | |
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)( | |
mask_cls_result, mask_pred_result) | |
processed_results[-1]["panoptic_seg"] = panoptic_r | |
# instance segmentation inference | |
if self.instance_on: | |
instance_r = retry_if_cuda_oom(self.instance_inference)( | |
mask_cls_result, mask_pred_result, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, None) | |
processed_results[-1]["instances"] = instance_r | |
return processed_results | |
def prepare_targets(self, targets, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for targets_per_image in targets: | |
if hasattr(targets_per_image, "gt_masks"): | |
# pad gt | |
gt_masks = targets_per_image.gt_masks | |
padded_masks = torch.zeros( | |
(gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], | |
: gt_masks.shape[2]] = gt_masks | |
else: | |
padded_masks = torch.tensor([]) | |
if "BMOC" in self.motionnet_type: | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes, | |
"masks": padded_masks, | |
# OPD | |
"gt_motion_valids": targets_per_image.gt_motion_valids, | |
"gt_types": targets_per_image.gt_types, | |
"gt_origins": targets_per_image.gt_origins, | |
"gt_axises": targets_per_image.gt_axises, | |
"gt_states": targets_per_image.gt_states, | |
"gt_statemaxs": targets_per_image.gt_statemaxs, | |
"gt_extrinsic": targets_per_image.gt_extrinsic, | |
"gt_extrinsic_quaternion": targets_per_image.gt_extrinsic_quaternion, | |
"gt_extrinsic_6d": targets_per_image.gt_extrinsic_6d, | |
} | |
) | |
else: | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes, | |
"masks": padded_masks, | |
# OPD | |
"gt_motion_valids": targets_per_image.gt_motion_valids, | |
"gt_types": targets_per_image.gt_types, | |
"gt_origins": targets_per_image.gt_origins, | |
"gt_axises": targets_per_image.gt_axises, | |
"gt_states": targets_per_image.gt_states, | |
"gt_statemaxs": targets_per_image.gt_statemaxs, | |
} | |
) | |
return new_targets | |
def semantic_inference(self, mask_cls, mask_pred): | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
def panoptic_inference(self, mask_cls, mask_pred): | |
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
mask_pred = mask_pred.sigmoid() | |
keep = labels.ne(self.sem_seg_head.num_classes) & ( | |
scores > self.object_mask_threshold) | |
cur_scores = scores[keep] | |
cur_classes = labels[keep] | |
cur_masks = mask_pred[keep] | |
cur_mask_cls = mask_cls[keep] | |
cur_mask_cls = cur_mask_cls[:, :-1] | |
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
h, w = cur_masks.shape[-2:] | |
panoptic_seg = torch.zeros( | |
(h, w), dtype=torch.int32, device=cur_masks.device) | |
segments_info = [] | |
current_segment_id = 0 | |
if cur_masks.shape[0] == 0: | |
# We didn't detect any mask :( | |
return panoptic_seg, segments_info | |
else: | |
# take argmax | |
cur_mask_ids = cur_prob_masks.argmax(0) | |
stuff_memory_list = {} | |
for k in range(cur_classes.shape[0]): | |
pred_class = cur_classes[k].item() | |
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
mask_area = (cur_mask_ids == k).sum().item() | |
original_area = (cur_masks[k] >= 0.5).sum().item() | |
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
if mask_area / original_area < self.overlap_threshold: | |
continue | |
# merge stuff regions | |
if not isthing: | |
if int(pred_class) in stuff_memory_list.keys(): | |
panoptic_seg[mask] = stuff_memory_list[int( | |
pred_class)] | |
continue | |
else: | |
stuff_memory_list[int( | |
pred_class)] = current_segment_id + 1 | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": bool(isthing), | |
"category_id": int(pred_class), | |
} | |
) | |
return panoptic_seg, segments_info | |
# Voting algorithms for inference | |
def votingProcess(self, x, voting): | |
device = x.device | |
if voting == "median": | |
final = torch.median(x, axis=0)[0] | |
elif voting == "mean": | |
final = torch.mean(x, axis=0) | |
elif voting == "geo-median": | |
x = x.detach().cpu().numpy() | |
final = geometric_median(x) | |
final = torch.from_numpy(final).to(device) | |
return final | |
def convert_to_valid_extrinsic(self, mask_extrinsic, dim=0): | |
if dim == 0: | |
translation = mask_extrinsic[9:12] | |
rotation_mat = quaternion_to_matrix(matrix_to_quaternion( | |
torch.transpose(mask_extrinsic[:9].reshape(3, 3), 0, 1))) | |
rotation_vector = torch.flatten(rotation_mat.transpose(0, 1)) | |
final_mask_extrinsic = torch.cat((rotation_vector, translation)) | |
elif dim == 1: | |
translation = mask_extrinsic[:, 9:12] | |
rotation_mat = quaternion_to_matrix(matrix_to_quaternion( | |
torch.transpose(mask_extrinsic[:, :9].reshape(-1, 3, 3), 1, 2))) | |
rotation_vector = torch.flatten( | |
rotation_mat.transpose(1, 2), start_dim=1) | |
final_mask_extrinsic = torch.cat( | |
(rotation_vector, translation), dim=1) | |
return final_mask_extrinsic | |
def instance_inference(self, mask_cls, mask_pred, mask_mtype, mask_morigin, mask_maxis, mask_mstate, mask_mstatemax, mask_extrinsic): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
# [Q, K] | |
scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze( | |
0).repeat(self.num_queries, 1).flatten(0, 1) | |
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
scores_per_image, topk_indices = scores.flatten( | |
0, 1).topk(self.test_topk_per_image, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = topk_indices // self.sem_seg_head.num_classes | |
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
mask_pred = mask_pred[topk_indices] | |
# OPD | |
mask_mtype = mask_mtype[topk_indices] | |
pred_probs = F.softmax(mask_mtype, dim=1) | |
mask_mtype = torch.argmax(pred_probs, 1).float() | |
mask_morigin = mask_morigin[topk_indices] | |
mask_maxis = mask_maxis[topk_indices] | |
mask_mstate = mask_mstate[topk_indices] | |
mask_mstatemax = mask_mstatemax[topk_indices] | |
if self.motionnet_type == "BMOC_V1": | |
mask_extrinsic = mask_extrinsic[topk_indices] | |
mask_extrinsic = self.convert_to_valid_extrinsic( | |
mask_extrinsic, dim=1) | |
if self.voting != "none": | |
final_translation = torch.median( | |
mask_extrinsic[:, 9:12], axis=0)[0] | |
quaternions = matrix_to_quaternion(torch.transpose( | |
mask_extrinsic[:, :9].reshape(-1, 3, 3), 1, 2)) | |
final_quaternion = self.votingProcess(quaternions, self.voting) | |
final_rotation = quaternion_to_matrix(final_quaternion) | |
final_rotation_vector = torch.flatten( | |
final_rotation.transpose(0, 1)) | |
mask_extrinsic = torch.cat( | |
(final_rotation_vector, final_translation)) | |
elif self.motionnet_type == "BMOC_V2": | |
mask_extrinsic = mask_extrinsic[topk_indices] | |
if self.voting != "none": | |
final_translation = torch.median( | |
mask_extrinsic[:, 4:7], axis=0)[0] | |
final_quaternion = self.votingProcess( | |
mask_extrinsic[:, :4], self.voting) | |
final_rotation = quaternion_to_matrix(final_quaternion) | |
final_rotation_vector = torch.flatten( | |
final_rotation.transpose(0, 1)) | |
mask_extrinsic = torch.cat( | |
(final_rotation_vector, final_translation)) | |
elif self.voting == "none": | |
translations = mask_extrinsic[:, 4:7] | |
quaternions = mask_extrinsic[:, :4] | |
rotation_vector = torch.flatten( | |
quaternion_to_matrix(quaternions).transpose(1, 2), 1) | |
mask_extrinsic = torch.cat((rotation_vector, translations), 1) | |
elif self.motionnet_type == "BMOC_V3": | |
mask_extrinsic = mask_extrinsic[topk_indices] | |
if self.voting != "none": | |
final_translation = torch.median( | |
mask_extrinsic[:, 6:9], axis=0)[0] | |
final_6d = self.votingProcess( | |
mask_extrinsic[:, :6], self.voting) | |
final_rotation = rotation_6d_to_matrix(final_6d) | |
final_rotation_vector = torch.flatten( | |
final_rotation.transpose(0, 1)) | |
mask_extrinsic = torch.cat( | |
(final_rotation_vector, final_translation)) | |
elif self.voting == "none": | |
translations = mask_extrinsic[:, 6:9] | |
rotation_6ds = mask_extrinsic[:, :6] | |
rotation_vector = torch.flatten( | |
rotation_6d_to_matrix(rotation_6ds).transpose(1, 2), 1) | |
mask_extrinsic = torch.cat((rotation_vector, translations), 1) | |
elif self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5": | |
translation = mask_extrinsic[4:7] | |
quaternion = mask_extrinsic[:4] | |
rotation_vector = torch.flatten( | |
quaternion_to_matrix(quaternion).transpose(0, 1)) | |
mask_extrinsic = torch.cat((rotation_vector, translation)) | |
elif self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V6": | |
mask_extrinsic = self.convert_to_valid_extrinsic( | |
mask_extrinsic, dim=0) | |
if "BMOC" in self.motionnet_type: | |
# Use the predicted extrinsic matrix to convert the predicted morigin and maxis back to camera coordinate | |
maxis_end = mask_morigin + mask_maxis | |
mextrinsic_c2w = torch.eye(4, device=mask_morigin.device).repeat( | |
mask_morigin.shape[0], 1, 1 | |
) | |
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6" or (self.motionnet_type == "BMOC_V1" and self.voting != "none") or (self.motionnet_type == "BMOC_V2" and self.voting != "none") or (self.motionnet_type == "BMOC_V3" and self.voting != "none"): | |
mextrinsic_c2w[:, 0:3, 0:4] = torch.transpose( | |
mask_extrinsic.reshape(4, 3).repeat( | |
mask_morigin.shape[0], 1, 1), 1, 2 | |
) | |
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3": | |
mextrinsic_c2w[:, 0:3, 0:4] = torch.transpose( | |
mask_extrinsic.reshape(-1, 4, 3), 1, 2 | |
) | |
mextrinsic_w2c = torch.inverse(mextrinsic_c2w) | |
mask_morigin = ( | |
torch.matmul( | |
mextrinsic_w2c[:, :3, | |
:3], mask_morigin.unsqueeze(2) | |
).squeeze(2) | |
+ mextrinsic_w2c[:, :3, 3] | |
) | |
end_in_cam = ( | |
torch.matmul( | |
mextrinsic_w2c[:, :3, :3], maxis_end.unsqueeze(2) | |
).squeeze(2) | |
+ mextrinsic_w2c[:, :3, 3] | |
) | |
mask_maxis = end_in_cam - mask_morigin | |
# if this is panoptic segmentation, we only keep the "thing" classes | |
if self.panoptic_on: | |
keep = torch.zeros_like(scores_per_image).bool() | |
for i, lab in enumerate(labels_per_image): | |
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = (mask_pred > 0).float() | |
# result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# Uncomment the following to get boxes from masks (this is slow) | |
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
# calculate average mask prob | |
mask_scores_per_image = (mask_pred.sigmoid().flatten( | |
1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
result.scores = scores_per_image * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
# OPD | |
result.mtype = mask_mtype | |
result.morigin = mask_morigin | |
result.maxis = mask_maxis | |
result.mstate = mask_mstate | |
result.mstatemax = mask_mstatemax | |
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6" or (self.motionnet_type == "BMOC_V1" and self.voting != "none") or (self.motionnet_type == "BMOC_V2" and self.voting != "none") or (self.motionnet_type == "BMOC_V3" and self.voting != "none"): | |
result.mextrinsic = mask_extrinsic.repeat(mask_morigin.shape[0], 1) | |
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3": | |
result.mextrinsic = mask_extrinsic | |
return result | |