Spaces:
Sleeping
Sleeping
update app to improve error handling and allow for simultaneous usage
Browse files- .gitignore +1 -0
- app.py +35 -21
.gitignore
CHANGED
@@ -5,3 +5,4 @@ venv/
|
|
5 |
__pycache__/
|
6 |
.output/
|
7 |
.data/
|
|
|
|
5 |
__pycache__/
|
6 |
.output/
|
7 |
.data/
|
8 |
+
.vscode/
|
app.py
CHANGED
@@ -26,22 +26,13 @@ ARGS = SimpleNamespace(
|
|
26 |
)
|
27 |
NUM_SAMPLES = 10
|
28 |
|
29 |
-
outputs =
|
30 |
|
31 |
|
32 |
def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_samples: int) -> list[Any]:
|
33 |
global outputs
|
34 |
|
35 |
-
def
|
36 |
-
"""Scrape folders for all generated gif files."""
|
37 |
-
for file in os.listdir(path):
|
38 |
-
sub_path = os.path.join(path, file)
|
39 |
-
if os.path.isdir(sub_path):
|
40 |
-
for image_file in os.listdir(sub_path):
|
41 |
-
if re.match(r".*\.gif$", image_file):
|
42 |
-
yield os.path.join(sub_path, image_file)
|
43 |
-
|
44 |
-
def find_images(path: str) -> list[str]:
|
45 |
"""Scrape folders for all generated gif files."""
|
46 |
images = {}
|
47 |
for file in os.listdir(path):
|
@@ -62,6 +53,14 @@ def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_sample
|
|
62 |
else:
|
63 |
os.remove(full_path)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
cfg = setup_cfg(ARGS)
|
66 |
|
67 |
engine.launch(
|
@@ -80,35 +79,42 @@ def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_sample
|
|
80 |
|
81 |
# process output
|
82 |
# TODO: may want to select these in decreasing order of score
|
|
|
83 |
image_files = find_images(ARGS.output)
|
84 |
-
outputs = []
|
85 |
for count, part in enumerate(image_files):
|
86 |
if count < MAX_PARTS:
|
87 |
-
outputs.append([Image.open(im) for im in image_files[part]])
|
88 |
|
89 |
return [
|
90 |
-
*[gr.update(value=out[0], visible=True) for out in outputs],
|
91 |
*[gr.update(visible=False) for _ in range(MAX_PARTS - len(outputs))],
|
92 |
]
|
93 |
|
94 |
|
95 |
def get_trigger(idx: int, fps: int = 40, oscillate: bool = True):
|
96 |
-
def iter_images(
|
97 |
-
if
|
98 |
-
|
|
|
|
|
|
|
99 |
time.sleep(1.0 / fps)
|
100 |
yield im
|
101 |
if oscillate:
|
102 |
-
for im in reversed(outputs[idx]):
|
103 |
time.sleep(1.0 / fps)
|
104 |
yield im
|
105 |
|
106 |
else:
|
107 |
-
|
108 |
|
109 |
return iter_images
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
112 |
with gr.Blocks() as demo:
|
113 |
gr.Markdown(
|
114 |
"""
|
@@ -176,12 +182,20 @@ with gr.Blocks() as demo:
|
|
176 |
)
|
177 |
|
178 |
submit_btn = gr.Button("Run model")
|
|
|
179 |
|
180 |
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
|
181 |
# identified.
|
182 |
-
images = [
|
|
|
|
|
|
|
183 |
for idx, image_comp in enumerate(images):
|
184 |
-
image_comp.select(get_trigger(idx), inputs=
|
|
|
|
|
|
|
|
|
185 |
|
186 |
submit_btn.click(
|
187 |
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=images, api_name=False
|
|
|
26 |
)
|
27 |
NUM_SAMPLES = 10
|
28 |
|
29 |
+
outputs = {}
|
30 |
|
31 |
|
32 |
def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_samples: int) -> list[Any]:
|
33 |
global outputs
|
34 |
|
35 |
+
def find_images(path: str) -> dict[str, list[str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"""Scrape folders for all generated gif files."""
|
37 |
images = {}
|
38 |
for file in os.listdir(path):
|
|
|
53 |
else:
|
54 |
os.remove(full_path)
|
55 |
|
56 |
+
if not rgb_image:
|
57 |
+
gr.Error("You must provide an RGB image before running the model.")
|
58 |
+
return [None] * 5
|
59 |
+
|
60 |
+
if not depth_image:
|
61 |
+
gr.Error("You must provide a depth image before running the model.")
|
62 |
+
return [None] * 5
|
63 |
+
|
64 |
cfg = setup_cfg(ARGS)
|
65 |
|
66 |
engine.launch(
|
|
|
79 |
|
80 |
# process output
|
81 |
# TODO: may want to select these in decreasing order of score
|
82 |
+
outputs[rgb_image] = []
|
83 |
image_files = find_images(ARGS.output)
|
|
|
84 |
for count, part in enumerate(image_files):
|
85 |
if count < MAX_PARTS:
|
86 |
+
outputs[rgb_image].append([Image.open(im) for im in image_files[part]])
|
87 |
|
88 |
return [
|
89 |
+
*[gr.update(value=out[0], visible=True) for out in outputs[rgb_image]],
|
90 |
*[gr.update(visible=False) for _ in range(MAX_PARTS - len(outputs))],
|
91 |
]
|
92 |
|
93 |
|
94 |
def get_trigger(idx: int, fps: int = 40, oscillate: bool = True):
|
95 |
+
def iter_images(rgb_image: str):
|
96 |
+
if not rgb_image or rgb_image not in outputs:
|
97 |
+
gr.Warning("You must upload an image and run the model before you can view the output.")
|
98 |
+
|
99 |
+
elif idx < len(outputs[rgb_image]):
|
100 |
+
for im in outputs[rgb_image][idx]:
|
101 |
time.sleep(1.0 / fps)
|
102 |
yield im
|
103 |
if oscillate:
|
104 |
+
for im in reversed(outputs[rgb_image][idx]):
|
105 |
time.sleep(1.0 / fps)
|
106 |
yield im
|
107 |
|
108 |
else:
|
109 |
+
gr.Error("Could not find any images to load into this module.")
|
110 |
|
111 |
return iter_images
|
112 |
|
113 |
|
114 |
+
def clear_outputs():
|
115 |
+
return [gr.update(value=None, visible=(idx == 0)) for idx in range(MAX_PARTS)]
|
116 |
+
|
117 |
+
|
118 |
with gr.Blocks() as demo:
|
119 |
gr.Markdown(
|
120 |
"""
|
|
|
182 |
)
|
183 |
|
184 |
submit_btn = gr.Button("Run model")
|
185 |
+
explanation = gr.Markdown(value="# Output\nClick on an image to see an animation of the part motion.")
|
186 |
|
187 |
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
|
188 |
# identified.
|
189 |
+
images = [
|
190 |
+
gr.Image(type="pil", label=f"Part {idx + 1}", show_download_button=False, visible=(idx == 0))
|
191 |
+
for idx in range(MAX_PARTS)
|
192 |
+
]
|
193 |
for idx, image_comp in enumerate(images):
|
194 |
+
image_comp.select(get_trigger(idx), inputs=rgb_image, outputs=image_comp, api_name=False)
|
195 |
+
|
196 |
+
# if user changes input, clear output images
|
197 |
+
rgb_image.change(clear_outputs, inputs=[], outputs=images, api_name=False)
|
198 |
+
depth_image.change(clear_outputs, inputs=[], outputs=images, api_name=False)
|
199 |
|
200 |
submit_btn.click(
|
201 |
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=images, api_name=False
|