Brice Vandeputte
commited on
Commit
·
6bde7ff
1
Parent(s):
a0562b3
Pick bioclip src and adapt demo
Browse files- .gitignore +1 -0
- PredictService.py +40 -0
- app.py +13 -6
- requirements.txt +5 -1
- src/bioclip/__init__.py +6 -0
- src/bioclip/predict.py +305 -0
.gitignore
CHANGED
@@ -3,3 +3,4 @@ flagged/
|
|
3 |
node_modules/
|
4 |
venv/
|
5 |
myenv/
|
|
|
|
3 |
node_modules/
|
4 |
venv/
|
5 |
myenv/
|
6 |
+
__pycache__/
|
PredictService.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
import requests
|
3 |
+
from src.bioclip.predict import TreeOfLifeClassifier, Rank
|
4 |
+
import logging
|
5 |
+
|
6 |
+
class PredictService:
|
7 |
+
|
8 |
+
def __init__(self):
|
9 |
+
self.classifier = TreeOfLifeClassifier()
|
10 |
+
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
11 |
+
logging.basicConfig(level=logging.INFO, format=log_format)
|
12 |
+
self.logger = logging.getLogger()
|
13 |
+
|
14 |
+
def download_image(self, url):
|
15 |
+
self.logger.info(f'download_image({url})')
|
16 |
+
response = requests.get(url)
|
17 |
+
|
18 |
+
# Vérifier si la requête a réussi
|
19 |
+
if response.status_code == 200:
|
20 |
+
# Créer un fichier temporaire
|
21 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
22 |
+
|
23 |
+
# Écrire le contenu de l'image dans le fichier temporaire
|
24 |
+
temp_file.write(response.content)
|
25 |
+
temp_file.close()
|
26 |
+
|
27 |
+
# Retourner le chemin du fichier temporaire
|
28 |
+
return temp_file.name
|
29 |
+
else:
|
30 |
+
raise Exception("Error while downloading image. Status: {}".format(response.status_code))
|
31 |
+
|
32 |
+
def predict(self, image_url=None):
|
33 |
+
if image_url is None:
|
34 |
+
raise Exception("expect image url")
|
35 |
+
image_path = self.download_image(image_url)
|
36 |
+
predictions = self.classifier.predict(image_path, Rank.SPECIES)
|
37 |
+
for prediction in predictions:
|
38 |
+
if 'file_name' in prediction:
|
39 |
+
del prediction['file_name']
|
40 |
+
return predictions
|
app.py
CHANGED
@@ -1,35 +1,42 @@
|
|
1 |
# https://www.gradio.app/guides/sharing-your-app#mounting-within-another-fast-api-app
|
2 |
-
import logging
|
3 |
-
import json
|
4 |
import gradio as gr
|
|
|
|
|
|
|
5 |
|
6 |
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
7 |
logging.basicConfig(level=logging.INFO, format=log_format)
|
8 |
logger = logging.getLogger()
|
9 |
|
|
|
|
|
10 |
|
11 |
def api_classification(url):
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
|
16 |
|
17 |
with gr.Blocks() as app:
|
18 |
with gr.Tab("BioCLIP API"):
|
19 |
with gr.Row():
|
20 |
with gr.Column():
|
|
|
|
|
21 |
api_input = gr.Textbox(
|
22 |
placeholder="Image url here",
|
23 |
lines=1,
|
24 |
label="Image url",
|
25 |
show_label=True,
|
26 |
info="Add image url here.",
|
|
|
27 |
)
|
28 |
api_classification_btn = gr.Button("API", variant="primary")
|
29 |
with gr.Column():
|
30 |
api_classification_output = gr.JSON() # https://www.gradio.app/docs/gradio/json
|
31 |
|
32 |
-
|
33 |
api_classification_btn.click(
|
34 |
fn=api_classification,
|
35 |
inputs=[api_input],
|
|
|
1 |
# https://www.gradio.app/guides/sharing-your-app#mounting-within-another-fast-api-app
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
from PredictService import PredictService
|
6 |
|
7 |
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
|
8 |
logging.basicConfig(level=logging.INFO, format=log_format)
|
9 |
logger = logging.getLogger()
|
10 |
|
11 |
+
svc = PredictService()
|
12 |
+
|
13 |
|
14 |
def api_classification(url):
|
15 |
+
url_to_use = url
|
16 |
+
if url_to_use == "exemple":
|
17 |
+
url_to_use = "https://images.pexels.com/photos/326900/pexels-photo-326900.jpeg?cs=srgb&dl=pexels-pixabay-326900.jpg&fm=jpg"
|
18 |
+
predictions = svc.predict(url_to_use)
|
19 |
+
return json.dumps(predictions)
|
20 |
|
21 |
|
22 |
with gr.Blocks() as app:
|
23 |
with gr.Tab("BioCLIP API"):
|
24 |
with gr.Row():
|
25 |
with gr.Column():
|
26 |
+
# https://www.gradio.app/guides/key-component-concepts
|
27 |
+
gr.Textbox(value="This is a BioCLIP based prediction. You must input a public url of an image and you will get TreeOfLife predictions as result", interactive=False)
|
28 |
api_input = gr.Textbox(
|
29 |
placeholder="Image url here",
|
30 |
lines=1,
|
31 |
label="Image url",
|
32 |
show_label=True,
|
33 |
info="Add image url here.",
|
34 |
+
value="https://natureconservancy-h.assetsadobe.com/is/image/content/dam/tnc/nature/en/photos/d/o/Downy-woodpecker-Matt-Williams.jpg?crop=0%2C39%2C3097%2C2322&wid=820&hei=615&scl=3.776829268292683"
|
35 |
)
|
36 |
api_classification_btn = gr.Button("API", variant="primary")
|
37 |
with gr.Column():
|
38 |
api_classification_output = gr.JSON() # https://www.gradio.app/docs/gradio/json
|
39 |
|
|
|
40 |
api_classification_btn.click(
|
41 |
fn=api_classification,
|
42 |
inputs=[api_input],
|
requirements.txt
CHANGED
@@ -1,2 +1,6 @@
|
|
1 |
huggingface_hub==0.22.2
|
2 |
-
gradio
|
|
|
|
|
|
|
|
|
|
1 |
huggingface_hub==0.22.2
|
2 |
+
gradio
|
3 |
+
# bioclip deps
|
4 |
+
open_clip_torch
|
5 |
+
torchvision
|
6 |
+
torch
|
src/bioclip/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-FileCopyrightText: 2024-present John Bradley <[email protected]>
|
2 |
+
#
|
3 |
+
# SPDX-License-Identifier: MIT
|
4 |
+
from .predict import TreeOfLifeClassifier, Rank, CustomLabelsClassifier
|
5 |
+
|
6 |
+
__all__ = ["TreeOfLifeClassifier", "Rank", "CustomLabelsClassifier"]
|
src/bioclip/predict.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from open_clip import create_model, get_tokenizer
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import numpy as np
|
7 |
+
import collections
|
8 |
+
import heapq
|
9 |
+
import PIL.Image
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
from typing import Union, List
|
12 |
+
from enum import Enum
|
13 |
+
|
14 |
+
|
15 |
+
HF_DATAFILE_REPO = "imageomics/bioclip-demo"
|
16 |
+
HF_DATAFILE_REPO_TYPE = "space"
|
17 |
+
PRED_FILENAME_KEY = "file_name"
|
18 |
+
PRED_CLASSICATION_KEY = "classification"
|
19 |
+
PRED_SCORE_KEY = "score"
|
20 |
+
|
21 |
+
OPENA_AI_IMAGENET_TEMPLATE = [
|
22 |
+
lambda c: f"a bad photo of a {c}.",
|
23 |
+
lambda c: f"a photo of many {c}.",
|
24 |
+
lambda c: f"a sculpture of a {c}.",
|
25 |
+
lambda c: f"a photo of the hard to see {c}.",
|
26 |
+
lambda c: f"a low resolution photo of the {c}.",
|
27 |
+
lambda c: f"a rendering of a {c}.",
|
28 |
+
lambda c: f"graffiti of a {c}.",
|
29 |
+
lambda c: f"a bad photo of the {c}.",
|
30 |
+
lambda c: f"a cropped photo of the {c}.",
|
31 |
+
lambda c: f"a tattoo of a {c}.",
|
32 |
+
lambda c: f"the embroidered {c}.",
|
33 |
+
lambda c: f"a photo of a hard to see {c}.",
|
34 |
+
lambda c: f"a bright photo of a {c}.",
|
35 |
+
lambda c: f"a photo of a clean {c}.",
|
36 |
+
lambda c: f"a photo of a dirty {c}.",
|
37 |
+
lambda c: f"a dark photo of the {c}.",
|
38 |
+
lambda c: f"a drawing of a {c}.",
|
39 |
+
lambda c: f"a photo of my {c}.",
|
40 |
+
lambda c: f"the plastic {c}.",
|
41 |
+
lambda c: f"a photo of the cool {c}.",
|
42 |
+
lambda c: f"a close-up photo of a {c}.",
|
43 |
+
lambda c: f"a black and white photo of the {c}.",
|
44 |
+
lambda c: f"a painting of the {c}.",
|
45 |
+
lambda c: f"a painting of a {c}.",
|
46 |
+
lambda c: f"a pixelated photo of the {c}.",
|
47 |
+
lambda c: f"a sculpture of the {c}.",
|
48 |
+
lambda c: f"a bright photo of the {c}.",
|
49 |
+
lambda c: f"a cropped photo of a {c}.",
|
50 |
+
lambda c: f"a plastic {c}.",
|
51 |
+
lambda c: f"a photo of the dirty {c}.",
|
52 |
+
lambda c: f"a jpeg corrupted photo of a {c}.",
|
53 |
+
lambda c: f"a blurry photo of the {c}.",
|
54 |
+
lambda c: f"a photo of the {c}.",
|
55 |
+
lambda c: f"a good photo of the {c}.",
|
56 |
+
lambda c: f"a rendering of the {c}.",
|
57 |
+
lambda c: f"a {c} in a video game.",
|
58 |
+
lambda c: f"a photo of one {c}.",
|
59 |
+
lambda c: f"a doodle of a {c}.",
|
60 |
+
lambda c: f"a close-up photo of the {c}.",
|
61 |
+
lambda c: f"a photo of a {c}.",
|
62 |
+
lambda c: f"the origami {c}.",
|
63 |
+
lambda c: f"the {c} in a video game.",
|
64 |
+
lambda c: f"a sketch of a {c}.",
|
65 |
+
lambda c: f"a doodle of the {c}.",
|
66 |
+
lambda c: f"a origami {c}.",
|
67 |
+
lambda c: f"a low resolution photo of a {c}.",
|
68 |
+
lambda c: f"the toy {c}.",
|
69 |
+
lambda c: f"a rendition of the {c}.",
|
70 |
+
lambda c: f"a photo of the clean {c}.",
|
71 |
+
lambda c: f"a photo of a large {c}.",
|
72 |
+
lambda c: f"a rendition of a {c}.",
|
73 |
+
lambda c: f"a photo of a nice {c}.",
|
74 |
+
lambda c: f"a photo of a weird {c}.",
|
75 |
+
lambda c: f"a blurry photo of a {c}.",
|
76 |
+
lambda c: f"a cartoon {c}.",
|
77 |
+
lambda c: f"art of a {c}.",
|
78 |
+
lambda c: f"a sketch of the {c}.",
|
79 |
+
lambda c: f"a embroidered {c}.",
|
80 |
+
lambda c: f"a pixelated photo of a {c}.",
|
81 |
+
lambda c: f"itap of the {c}.",
|
82 |
+
lambda c: f"a jpeg corrupted photo of the {c}.",
|
83 |
+
lambda c: f"a good photo of a {c}.",
|
84 |
+
lambda c: f"a plushie {c}.",
|
85 |
+
lambda c: f"a photo of the nice {c}.",
|
86 |
+
lambda c: f"a photo of the small {c}.",
|
87 |
+
lambda c: f"a photo of the weird {c}.",
|
88 |
+
lambda c: f"the cartoon {c}.",
|
89 |
+
lambda c: f"art of the {c}.",
|
90 |
+
lambda c: f"a drawing of the {c}.",
|
91 |
+
lambda c: f"a photo of the large {c}.",
|
92 |
+
lambda c: f"a black and white photo of a {c}.",
|
93 |
+
lambda c: f"the plushie {c}.",
|
94 |
+
lambda c: f"a dark photo of a {c}.",
|
95 |
+
lambda c: f"itap of a {c}.",
|
96 |
+
lambda c: f"graffiti of the {c}.",
|
97 |
+
lambda c: f"a toy {c}.",
|
98 |
+
lambda c: f"itap of my {c}.",
|
99 |
+
lambda c: f"a photo of a cool {c}.",
|
100 |
+
lambda c: f"a photo of a small {c}.",
|
101 |
+
lambda c: f"a tattoo of the {c}.",
|
102 |
+
]
|
103 |
+
|
104 |
+
|
105 |
+
def get_cached_datafile(filename:str):
|
106 |
+
return hf_hub_download(repo_id=HF_DATAFILE_REPO, filename=filename, repo_type=HF_DATAFILE_REPO_TYPE)
|
107 |
+
|
108 |
+
|
109 |
+
def get_txt_emb():
|
110 |
+
txt_emb_npy = get_cached_datafile("txt_emb_species.npy")
|
111 |
+
return torch.from_numpy(np.load(txt_emb_npy))
|
112 |
+
|
113 |
+
|
114 |
+
def get_txt_names():
|
115 |
+
txt_names_json = get_cached_datafile("txt_emb_species.json")
|
116 |
+
with open(txt_names_json) as fd:
|
117 |
+
txt_names = json.load(fd)
|
118 |
+
return txt_names
|
119 |
+
|
120 |
+
|
121 |
+
preprocess_img = transforms.Compose(
|
122 |
+
[
|
123 |
+
transforms.ToTensor(),
|
124 |
+
transforms.Resize((224, 224), antialias=True),
|
125 |
+
transforms.Normalize(
|
126 |
+
mean=(0.48145466, 0.4578275, 0.40821073),
|
127 |
+
std=(0.26862954, 0.26130258, 0.27577711),
|
128 |
+
),
|
129 |
+
]
|
130 |
+
)
|
131 |
+
|
132 |
+
class Rank(Enum):
|
133 |
+
KINGDOM = 0
|
134 |
+
PHYLUM = 1
|
135 |
+
CLASS = 2
|
136 |
+
ORDER = 3
|
137 |
+
FAMILY = 4
|
138 |
+
GENUS = 5
|
139 |
+
SPECIES = 6
|
140 |
+
|
141 |
+
def get_label(self):
|
142 |
+
return self.name.lower()
|
143 |
+
|
144 |
+
|
145 |
+
# The datafile of names ('txt_emb_species.json') contains species epithet.
|
146 |
+
# To create a label for species we concatenate the genus and species epithet.
|
147 |
+
SPECIES_LABEL = Rank.SPECIES.get_label()
|
148 |
+
SPECIES_EPITHET_LABEL = "species_epithet"
|
149 |
+
COMMON_NAME_LABEL = "common_name"
|
150 |
+
|
151 |
+
|
152 |
+
def create_bioclip_model(model_str="hf-hub:imageomics/bioclip", device="cuda"):
|
153 |
+
model = create_model(model_str, output_dict=True, require_pretrained=True)
|
154 |
+
model = model.to(device)
|
155 |
+
return torch.compile(model)
|
156 |
+
|
157 |
+
|
158 |
+
def create_bioclip_tokenizer(tokenizer_str="ViT-B-16"):
|
159 |
+
return get_tokenizer(tokenizer_str)
|
160 |
+
|
161 |
+
|
162 |
+
class CustomLabelsClassifier(object):
|
163 |
+
def __init__(self, device: Union[str, torch.device] = 'cpu'):
|
164 |
+
self.device = device
|
165 |
+
self.model = create_bioclip_model(device=device)
|
166 |
+
self.tokenizer = create_bioclip_tokenizer()
|
167 |
+
|
168 |
+
def get_txt_features(self, classnames):
|
169 |
+
all_features = []
|
170 |
+
for classname in classnames:
|
171 |
+
txts = [template(classname) for template in OPENA_AI_IMAGENET_TEMPLATE]
|
172 |
+
txts = self.tokenizer(txts).to(self.device)
|
173 |
+
txt_features = self.model.encode_text(txts)
|
174 |
+
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
|
175 |
+
txt_features /= txt_features.norm()
|
176 |
+
all_features.append(txt_features)
|
177 |
+
all_features = torch.stack(all_features, dim=1)
|
178 |
+
return all_features
|
179 |
+
|
180 |
+
@torch.no_grad()
|
181 |
+
def predict(self, image_path: str, cls_ary: List[str]) -> dict[str, float]:
|
182 |
+
img = PIL.Image.open(image_path)
|
183 |
+
classes = [cls.strip() for cls in cls_ary]
|
184 |
+
txt_features = self.get_txt_features(classes)
|
185 |
+
|
186 |
+
img = preprocess_img(img).to(self.device)
|
187 |
+
img_features = self.model.encode_image(img.unsqueeze(0))
|
188 |
+
img_features = F.normalize(img_features, dim=-1)
|
189 |
+
|
190 |
+
logits = (self.model.logit_scale.exp() * img_features @ txt_features).squeeze()
|
191 |
+
probs = F.softmax(logits, dim=0).to("cpu").tolist()
|
192 |
+
pred_list = []
|
193 |
+
for cls, prob in zip(classes, probs):
|
194 |
+
pred_list.append({
|
195 |
+
PRED_FILENAME_KEY: image_path,
|
196 |
+
PRED_CLASSICATION_KEY: cls,
|
197 |
+
PRED_SCORE_KEY: prob
|
198 |
+
})
|
199 |
+
return pred_list
|
200 |
+
|
201 |
+
|
202 |
+
def predict_classifications_from_list(img: Union[PIL.Image.Image, str], cls_ary: List[str], device: Union[str, torch.device] = 'cpu') -> dict[str, float]:
|
203 |
+
classifier = CustomLabelsClassifier(device=device)
|
204 |
+
return classifier.predict(img, cls_ary)
|
205 |
+
|
206 |
+
|
207 |
+
def get_tol_classification_labels(rank: Rank) -> List[str]:
|
208 |
+
names = []
|
209 |
+
for i in range(rank.value + 1):
|
210 |
+
i_rank = Rank(i)
|
211 |
+
if i_rank == Rank.SPECIES:
|
212 |
+
names.append(SPECIES_EPITHET_LABEL)
|
213 |
+
rank_name = i_rank.name.lower()
|
214 |
+
names.append(rank_name)
|
215 |
+
if rank == Rank.SPECIES:
|
216 |
+
names.append(COMMON_NAME_LABEL)
|
217 |
+
return names
|
218 |
+
|
219 |
+
|
220 |
+
def create_classification_dict(names: List[List[str]], rank: Rank) -> dict[str, str]:
|
221 |
+
scientific_names = names[0]
|
222 |
+
common_name = names[1]
|
223 |
+
classification_dict = {}
|
224 |
+
for idx, label in enumerate(get_tol_classification_labels(rank=rank)):
|
225 |
+
if label == SPECIES_LABEL:
|
226 |
+
value = scientific_names[-2] + " " + scientific_names[-1]
|
227 |
+
elif label == COMMON_NAME_LABEL:
|
228 |
+
value = common_name
|
229 |
+
else:
|
230 |
+
value = scientific_names[idx]
|
231 |
+
classification_dict[label] = value
|
232 |
+
return classification_dict
|
233 |
+
|
234 |
+
|
235 |
+
def join_names(classification_dict: dict[str, str]) -> str:
|
236 |
+
return " ".join(classification_dict.values())
|
237 |
+
|
238 |
+
|
239 |
+
class TreeOfLifeClassifier(object):
|
240 |
+
def __init__(self, device: Union[str, torch.device] = 'cpu'):
|
241 |
+
self.device = device
|
242 |
+
self.model = create_bioclip_model(device=device)
|
243 |
+
self.txt_emb = get_txt_emb().to(device)
|
244 |
+
self.txt_names = get_txt_names()
|
245 |
+
|
246 |
+
def encode_image(self, img: PIL.Image.Image) -> torch.Tensor:
|
247 |
+
img = preprocess_img(img).to(self.device)
|
248 |
+
img_features = self.model.encode_image(img.unsqueeze(0))
|
249 |
+
return img_features
|
250 |
+
|
251 |
+
def predict_species(self, img: PIL.Image.Image) -> torch.Tensor:
|
252 |
+
img_features = self.encode_image(img)
|
253 |
+
img_features = F.normalize(img_features, dim=-1)
|
254 |
+
logits = (self.model.logit_scale.exp() * img_features @ self.txt_emb).squeeze()
|
255 |
+
probs = F.softmax(logits, dim=0)
|
256 |
+
return probs
|
257 |
+
|
258 |
+
def format_species_probs(self, image_path: str, probs: torch.Tensor, k: int = 5) -> List[dict[str, float]]:
|
259 |
+
topk = probs.topk(k)
|
260 |
+
result = []
|
261 |
+
for i, prob in zip(topk.indices, topk.values):
|
262 |
+
item = { PRED_FILENAME_KEY: image_path }
|
263 |
+
item.update(create_classification_dict(self.txt_names[i], Rank.SPECIES))
|
264 |
+
item[PRED_SCORE_KEY] = prob.item()
|
265 |
+
result.append(item)
|
266 |
+
return result
|
267 |
+
|
268 |
+
def format_grouped_probs(self, image_path: str, probs: torch.Tensor, rank: Rank, min_prob: float = 1e-9, k: int = 5) -> List[dict[str, float]]:
|
269 |
+
output = collections.defaultdict(float)
|
270 |
+
class_dict_lookup = {}
|
271 |
+
name_to_class_dict = {}
|
272 |
+
for i in torch.nonzero(probs > min_prob).squeeze():
|
273 |
+
classification_dict = create_classification_dict(self.txt_names[i], rank)
|
274 |
+
name = join_names(classification_dict)
|
275 |
+
class_dict_lookup[name] = classification_dict
|
276 |
+
output[name] += probs[i]
|
277 |
+
name_to_class_dict[name] = classification_dict
|
278 |
+
topk_names = heapq.nlargest(k, output, key=output.get)
|
279 |
+
prediction_ary = []
|
280 |
+
for name in topk_names:
|
281 |
+
item = { PRED_FILENAME_KEY: image_path }
|
282 |
+
item.update(name_to_class_dict[name])
|
283 |
+
#item.update(class_dict_lookup)
|
284 |
+
item[PRED_SCORE_KEY] = output[name].item()
|
285 |
+
prediction_ary.append(item)
|
286 |
+
return prediction_ary
|
287 |
+
|
288 |
+
@torch.no_grad()
|
289 |
+
def predict(self, image_path: str, rank: Rank, min_prob: float = 1e-9, k: int = 5) -> List[dict[str, float]]:
|
290 |
+
img = PIL.Image.open(image_path)
|
291 |
+
probs = self.predict_species(img)
|
292 |
+
if rank == Rank.SPECIES:
|
293 |
+
return self.format_species_probs(image_path, probs, k)
|
294 |
+
return self.format_grouped_probs(image_path, probs, rank, min_prob, k)
|
295 |
+
|
296 |
+
|
297 |
+
def predict_classification(img: str, rank: Rank, device: Union[str, torch.device] = 'cpu',
|
298 |
+
min_prob: float = 1e-9, k: int = 5) -> dict[str, float]:
|
299 |
+
"""
|
300 |
+
Predicts from the entire tree of life.
|
301 |
+
If targeting a higher rank than species, then this function predicts among all
|
302 |
+
species, then sums up species-level probabilities for the given rank.
|
303 |
+
"""
|
304 |
+
classifier = TreeOfLifeClassifier(device=device)
|
305 |
+
return classifier.predict(img, rank, min_prob, k)
|