Spaces:
Build error
Build error
"""This script defines the parametric 3d face model for Deep3DFaceRecon_pytorch | |
""" | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from scipy.io import loadmat | |
from src.face3d.util.load_mats import transferBFM09 | |
import os | |
def perspective_projection(focal, center): | |
# return p.T (N, 3) @ (3, 3) | |
return np.array([ | |
focal, 0, center, | |
0, focal, center, | |
0, 0, 1 | |
]).reshape([3, 3]).astype(np.float32).transpose() | |
class SH: | |
def __init__(self): | |
self.a = [np.pi, 2 * np.pi / np.sqrt(3.), 2 * np.pi / np.sqrt(8.)] | |
self.c = [1/np.sqrt(4 * np.pi), np.sqrt(3.) / np.sqrt(4 * np.pi), 3 * np.sqrt(5.) / np.sqrt(12 * np.pi)] | |
class ParametricFaceModel: | |
def __init__(self, | |
bfm_folder='./BFM', | |
recenter=True, | |
camera_distance=10., | |
init_lit=np.array([ | |
0.8, 0, 0, 0, 0, 0, 0, 0, 0 | |
]), | |
focal=1015., | |
center=112., | |
is_train=True, | |
default_name='BFM_model_front.mat'): | |
if not os.path.isfile(os.path.join(bfm_folder, default_name)): | |
transferBFM09(bfm_folder) | |
model = loadmat(os.path.join(bfm_folder, default_name)) | |
# mean face shape. [3*N,1] | |
self.mean_shape = model['meanshape'].astype(np.float32) | |
# identity basis. [3*N,80] | |
self.id_base = model['idBase'].astype(np.float32) | |
# expression basis. [3*N,64] | |
self.exp_base = model['exBase'].astype(np.float32) | |
# mean face texture. [3*N,1] (0-255) | |
self.mean_tex = model['meantex'].astype(np.float32) | |
# texture basis. [3*N,80] | |
self.tex_base = model['texBase'].astype(np.float32) | |
# face indices for each vertex that lies in. starts from 0. [N,8] | |
self.point_buf = model['point_buf'].astype(np.int64) - 1 | |
# vertex indices for each face. starts from 0. [F,3] | |
self.face_buf = model['tri'].astype(np.int64) - 1 | |
# vertex indices for 68 landmarks. starts from 0. [68,1] | |
self.keypoints = np.squeeze(model['keypoints']).astype(np.int64) - 1 | |
if is_train: | |
# vertex indices for small face region to compute photometric error. starts from 0. | |
self.front_mask = np.squeeze(model['frontmask2_idx']).astype(np.int64) - 1 | |
# vertex indices for each face from small face region. starts from 0. [f,3] | |
self.front_face_buf = model['tri_mask2'].astype(np.int64) - 1 | |
# vertex indices for pre-defined skin region to compute reflectance loss | |
self.skin_mask = np.squeeze(model['skinmask']) | |
if recenter: | |
mean_shape = self.mean_shape.reshape([-1, 3]) | |
mean_shape = mean_shape - np.mean(mean_shape, axis=0, keepdims=True) | |
self.mean_shape = mean_shape.reshape([-1, 1]) | |
self.persc_proj = perspective_projection(focal, center) | |
self.device = 'cpu' | |
self.camera_distance = camera_distance | |
self.SH = SH() | |
self.init_lit = init_lit.reshape([1, 1, -1]).astype(np.float32) | |
def to(self, device): | |
self.device = device | |
for key, value in self.__dict__.items(): | |
if type(value).__module__ == np.__name__: | |
setattr(self, key, torch.tensor(value).to(device)) | |
def compute_shape(self, id_coeff, exp_coeff): | |
""" | |
Return: | |
face_shape -- torch.tensor, size (B, N, 3) | |
Parameters: | |
id_coeff -- torch.tensor, size (B, 80), identity coeffs | |
exp_coeff -- torch.tensor, size (B, 64), expression coeffs | |
""" | |
batch_size = id_coeff.shape[0] | |
id_part = torch.einsum('ij,aj->ai', self.id_base, id_coeff) | |
exp_part = torch.einsum('ij,aj->ai', self.exp_base, exp_coeff) | |
face_shape = id_part + exp_part + self.mean_shape.reshape([1, -1]) | |
return face_shape.reshape([batch_size, -1, 3]) | |
def compute_texture(self, tex_coeff, normalize=True): | |
""" | |
Return: | |
face_texture -- torch.tensor, size (B, N, 3), in RGB order, range (0, 1.) | |
Parameters: | |
tex_coeff -- torch.tensor, size (B, 80) | |
""" | |
batch_size = tex_coeff.shape[0] | |
face_texture = torch.einsum('ij,aj->ai', self.tex_base, tex_coeff) + self.mean_tex | |
if normalize: | |
face_texture = face_texture / 255. | |
return face_texture.reshape([batch_size, -1, 3]) | |
def compute_norm(self, face_shape): | |
""" | |
Return: | |
vertex_norm -- torch.tensor, size (B, N, 3) | |
Parameters: | |
face_shape -- torch.tensor, size (B, N, 3) | |
""" | |
v1 = face_shape[:, self.face_buf[:, 0]] | |
v2 = face_shape[:, self.face_buf[:, 1]] | |
v3 = face_shape[:, self.face_buf[:, 2]] | |
e1 = v1 - v2 | |
e2 = v2 - v3 | |
face_norm = torch.cross(e1, e2, dim=-1) | |
face_norm = F.normalize(face_norm, dim=-1, p=2) | |
face_norm = torch.cat([face_norm, torch.zeros(face_norm.shape[0], 1, 3).to(self.device)], dim=1) | |
vertex_norm = torch.sum(face_norm[:, self.point_buf], dim=2) | |
vertex_norm = F.normalize(vertex_norm, dim=-1, p=2) | |
return vertex_norm | |
def compute_color(self, face_texture, face_norm, gamma): | |
""" | |
Return: | |
face_color -- torch.tensor, size (B, N, 3), range (0, 1.) | |
Parameters: | |
face_texture -- torch.tensor, size (B, N, 3), from texture model, range (0, 1.) | |
face_norm -- torch.tensor, size (B, N, 3), rotated face normal | |
gamma -- torch.tensor, size (B, 27), SH coeffs | |
""" | |
batch_size = gamma.shape[0] | |
v_num = face_texture.shape[1] | |
a, c = self.SH.a, self.SH.c | |
gamma = gamma.reshape([batch_size, 3, 9]) | |
gamma = gamma + self.init_lit | |
gamma = gamma.permute(0, 2, 1) | |
Y = torch.cat([ | |
a[0] * c[0] * torch.ones_like(face_norm[..., :1]).to(self.device), | |
-a[1] * c[1] * face_norm[..., 1:2], | |
a[1] * c[1] * face_norm[..., 2:], | |
-a[1] * c[1] * face_norm[..., :1], | |
a[2] * c[2] * face_norm[..., :1] * face_norm[..., 1:2], | |
-a[2] * c[2] * face_norm[..., 1:2] * face_norm[..., 2:], | |
0.5 * a[2] * c[2] / np.sqrt(3.) * (3 * face_norm[..., 2:] ** 2 - 1), | |
-a[2] * c[2] * face_norm[..., :1] * face_norm[..., 2:], | |
0.5 * a[2] * c[2] * (face_norm[..., :1] ** 2 - face_norm[..., 1:2] ** 2) | |
], dim=-1) | |
r = Y @ gamma[..., :1] | |
g = Y @ gamma[..., 1:2] | |
b = Y @ gamma[..., 2:] | |
face_color = torch.cat([r, g, b], dim=-1) * face_texture | |
return face_color | |
def compute_rotation(self, angles): | |
""" | |
Return: | |
rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat | |
Parameters: | |
angles -- torch.tensor, size (B, 3), radian | |
""" | |
batch_size = angles.shape[0] | |
ones = torch.ones([batch_size, 1]).to(self.device) | |
zeros = torch.zeros([batch_size, 1]).to(self.device) | |
x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:], | |
rot_x = torch.cat([ | |
ones, zeros, zeros, | |
zeros, torch.cos(x), -torch.sin(x), | |
zeros, torch.sin(x), torch.cos(x) | |
], dim=1).reshape([batch_size, 3, 3]) | |
rot_y = torch.cat([ | |
torch.cos(y), zeros, torch.sin(y), | |
zeros, ones, zeros, | |
-torch.sin(y), zeros, torch.cos(y) | |
], dim=1).reshape([batch_size, 3, 3]) | |
rot_z = torch.cat([ | |
torch.cos(z), -torch.sin(z), zeros, | |
torch.sin(z), torch.cos(z), zeros, | |
zeros, zeros, ones | |
], dim=1).reshape([batch_size, 3, 3]) | |
rot = rot_z @ rot_y @ rot_x | |
return rot.permute(0, 2, 1) | |
def to_camera(self, face_shape): | |
face_shape[..., -1] = self.camera_distance - face_shape[..., -1] | |
return face_shape | |
def to_image(self, face_shape): | |
""" | |
Return: | |
face_proj -- torch.tensor, size (B, N, 2), y direction is opposite to v direction | |
Parameters: | |
face_shape -- torch.tensor, size (B, N, 3) | |
""" | |
# to image_plane | |
face_proj = face_shape @ self.persc_proj | |
face_proj = face_proj[..., :2] / face_proj[..., 2:] | |
return face_proj | |
def transform(self, face_shape, rot, trans): | |
""" | |
Return: | |
face_shape -- torch.tensor, size (B, N, 3) pts @ rot + trans | |
Parameters: | |
face_shape -- torch.tensor, size (B, N, 3) | |
rot -- torch.tensor, size (B, 3, 3) | |
trans -- torch.tensor, size (B, 3) | |
""" | |
return face_shape @ rot + trans.unsqueeze(1) | |
def get_landmarks(self, face_proj): | |
""" | |
Return: | |
face_lms -- torch.tensor, size (B, 68, 2) | |
Parameters: | |
face_proj -- torch.tensor, size (B, N, 2) | |
""" | |
return face_proj[:, self.keypoints] | |
def split_coeff(self, coeffs): | |
""" | |
Return: | |
coeffs_dict -- a dict of torch.tensors | |
Parameters: | |
coeffs -- torch.tensor, size (B, 256) | |
""" | |
id_coeffs = coeffs[:, :80] | |
exp_coeffs = coeffs[:, 80: 144] | |
tex_coeffs = coeffs[:, 144: 224] | |
angles = coeffs[:, 224: 227] | |
gammas = coeffs[:, 227: 254] | |
translations = coeffs[:, 254:] | |
return { | |
'id': id_coeffs, | |
'exp': exp_coeffs, | |
'tex': tex_coeffs, | |
'angle': angles, | |
'gamma': gammas, | |
'trans': translations | |
} | |
def compute_for_render(self, coeffs): | |
""" | |
Return: | |
face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate | |
face_color -- torch.tensor, size (B, N, 3), in RGB order | |
landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction | |
Parameters: | |
coeffs -- torch.tensor, size (B, 257) | |
""" | |
coef_dict = self.split_coeff(coeffs) | |
face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) | |
rotation = self.compute_rotation(coef_dict['angle']) | |
face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) | |
face_vertex = self.to_camera(face_shape_transformed) | |
face_proj = self.to_image(face_vertex) | |
landmark = self.get_landmarks(face_proj) | |
face_texture = self.compute_texture(coef_dict['tex']) | |
face_norm = self.compute_norm(face_shape) | |
face_norm_roted = face_norm @ rotation | |
face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) | |
return face_vertex, face_texture, face_color, landmark | |
def compute_for_render_woRotation(self, coeffs): | |
""" | |
Return: | |
face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate | |
face_color -- torch.tensor, size (B, N, 3), in RGB order | |
landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction | |
Parameters: | |
coeffs -- torch.tensor, size (B, 257) | |
""" | |
coef_dict = self.split_coeff(coeffs) | |
face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) | |
#rotation = self.compute_rotation(coef_dict['angle']) | |
#face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) | |
face_vertex = self.to_camera(face_shape) | |
face_proj = self.to_image(face_vertex) | |
landmark = self.get_landmarks(face_proj) | |
face_texture = self.compute_texture(coef_dict['tex']) | |
face_norm = self.compute_norm(face_shape) | |
face_norm_roted = face_norm # @ rotation | |
face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) | |
return face_vertex, face_texture, face_color, landmark | |
if __name__ == '__main__': | |
transferBFM09() |