yablokoff's picture
Duplicate from vinthony/SadTalker
f368cb7
import argparse
import logging
import os
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.utils.data.distributed
from torch.nn.utils import clip_grad_norm_
import losses
from backbones import get_model
from dataset import MXFaceDataset, SyntheticDataset, DataLoaderX
from partial_fc import PartialFC
from utils.utils_amp import MaxClipGradScaler
from utils.utils_callbacks import CallBackVerification, CallBackLogging, CallBackModelCheckpoint
from utils.utils_config import get_config
from utils.utils_logging import AverageMeter, init_logging
def main(args):
cfg = get_config(args.config)
try:
world_size = int(os.environ['WORLD_SIZE'])
rank = int(os.environ['RANK'])
dist.init_process_group('nccl')
except KeyError:
world_size = 1
rank = 0
dist.init_process_group(backend='nccl', init_method="tcp://127.0.0.1:12584", rank=rank, world_size=world_size)
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
os.makedirs(cfg.output, exist_ok=True)
init_logging(rank, cfg.output)
if cfg.rec == "synthetic":
train_set = SyntheticDataset(local_rank=local_rank)
else:
train_set = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True)
train_loader = DataLoaderX(
local_rank=local_rank, dataset=train_set, batch_size=cfg.batch_size,
sampler=train_sampler, num_workers=2, pin_memory=True, drop_last=True)
backbone = get_model(cfg.network, dropout=0.0, fp16=cfg.fp16, num_features=cfg.embedding_size).to(local_rank)
if cfg.resume:
try:
backbone_pth = os.path.join(cfg.output, "backbone.pth")
backbone.load_state_dict(torch.load(backbone_pth, map_location=torch.device(local_rank)))
if rank == 0:
logging.info("backbone resume successfully!")
except (FileNotFoundError, KeyError, IndexError, RuntimeError):
if rank == 0:
logging.info("resume fail, backbone init successfully!")
backbone = torch.nn.parallel.DistributedDataParallel(
module=backbone, broadcast_buffers=False, device_ids=[local_rank])
backbone.train()
margin_softmax = losses.get_loss(cfg.loss)
module_partial_fc = PartialFC(
rank=rank, local_rank=local_rank, world_size=world_size, resume=cfg.resume,
batch_size=cfg.batch_size, margin_softmax=margin_softmax, num_classes=cfg.num_classes,
sample_rate=cfg.sample_rate, embedding_size=cfg.embedding_size, prefix=cfg.output)
opt_backbone = torch.optim.SGD(
params=[{'params': backbone.parameters()}],
lr=cfg.lr / 512 * cfg.batch_size * world_size,
momentum=0.9, weight_decay=cfg.weight_decay)
opt_pfc = torch.optim.SGD(
params=[{'params': module_partial_fc.parameters()}],
lr=cfg.lr / 512 * cfg.batch_size * world_size,
momentum=0.9, weight_decay=cfg.weight_decay)
num_image = len(train_set)
total_batch_size = cfg.batch_size * world_size
cfg.warmup_step = num_image // total_batch_size * cfg.warmup_epoch
cfg.total_step = num_image // total_batch_size * cfg.num_epoch
def lr_step_func(current_step):
cfg.decay_step = [x * num_image // total_batch_size for x in cfg.decay_epoch]
if current_step < cfg.warmup_step:
return current_step / cfg.warmup_step
else:
return 0.1 ** len([m for m in cfg.decay_step if m <= current_step])
scheduler_backbone = torch.optim.lr_scheduler.LambdaLR(
optimizer=opt_backbone, lr_lambda=lr_step_func)
scheduler_pfc = torch.optim.lr_scheduler.LambdaLR(
optimizer=opt_pfc, lr_lambda=lr_step_func)
for key, value in cfg.items():
num_space = 25 - len(key)
logging.info(": " + key + " " * num_space + str(value))
val_target = cfg.val_targets
callback_verification = CallBackVerification(2000, rank, val_target, cfg.rec)
callback_logging = CallBackLogging(50, rank, cfg.total_step, cfg.batch_size, world_size, None)
callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output)
loss = AverageMeter()
start_epoch = 0
global_step = 0
grad_amp = MaxClipGradScaler(cfg.batch_size, 128 * cfg.batch_size, growth_interval=100) if cfg.fp16 else None
for epoch in range(start_epoch, cfg.num_epoch):
train_sampler.set_epoch(epoch)
for step, (img, label) in enumerate(train_loader):
global_step += 1
features = F.normalize(backbone(img))
x_grad, loss_v = module_partial_fc.forward_backward(label, features, opt_pfc)
if cfg.fp16:
features.backward(grad_amp.scale(x_grad))
grad_amp.unscale_(opt_backbone)
clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
grad_amp.step(opt_backbone)
grad_amp.update()
else:
features.backward(x_grad)
clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2)
opt_backbone.step()
opt_pfc.step()
module_partial_fc.update()
opt_backbone.zero_grad()
opt_pfc.zero_grad()
loss.update(loss_v, 1)
callback_logging(global_step, loss, epoch, cfg.fp16, scheduler_backbone.get_last_lr()[0], grad_amp)
callback_verification(global_step, backbone)
scheduler_backbone.step()
scheduler_pfc.step()
callback_checkpoint(global_step, backbone, module_partial_fc)
dist.destroy_process_group()
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='PyTorch ArcFace Training')
parser.add_argument('config', type=str, help='py config file')
parser.add_argument('--local_rank', type=int, default=0, help='local_rank')
main(parser.parse_args())