Spaces:
Sleeping
Sleeping
Create block.py
Browse files- model/block.py +146 -0
model/block.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
##########################################################################
|
4 |
+
def conv(in_channels, out_channels, kernel_size, bias=False, stride=1):
|
5 |
+
layer = nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias, stride=stride)
|
6 |
+
return layer
|
7 |
+
|
8 |
+
|
9 |
+
def conv3x3(in_chn, out_chn, bias=True):
|
10 |
+
layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)
|
11 |
+
return layer
|
12 |
+
|
13 |
+
|
14 |
+
def conv_down(in_chn, out_chn, bias=False):
|
15 |
+
layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias)
|
16 |
+
return layer
|
17 |
+
|
18 |
+
##########################################################################
|
19 |
+
## Supervised Attention Module (RAM)
|
20 |
+
class SAM(nn.Module):
|
21 |
+
def __init__(self, n_feat, kernel_size, bias):
|
22 |
+
super(SAM, self).__init__()
|
23 |
+
self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias)
|
24 |
+
self.conv2 = conv(n_feat, 3, kernel_size, bias=bias)
|
25 |
+
self.conv3 = conv(3, n_feat, kernel_size, bias=bias)
|
26 |
+
|
27 |
+
def forward(self, x, x_img):
|
28 |
+
x1 = self.conv1(x)
|
29 |
+
img = self.conv2(x) + x_img
|
30 |
+
x2 = torch.sigmoid(self.conv3(img))
|
31 |
+
x1 = x1 * x2
|
32 |
+
x1 = x1 + x
|
33 |
+
return x1, img
|
34 |
+
|
35 |
+
##########################################################################
|
36 |
+
## Spatial Attention
|
37 |
+
class SALayer(nn.Module):
|
38 |
+
def __init__(self, kernel_size=7):
|
39 |
+
super(SALayer, self).__init__()
|
40 |
+
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size // 2, bias=False)
|
41 |
+
self.sigmoid = nn.Sigmoid()
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
avg_out = torch.mean(x, dim=1, keepdim=True)
|
45 |
+
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
46 |
+
y = torch.cat([avg_out, max_out], dim=1)
|
47 |
+
y = self.conv1(y)
|
48 |
+
y = self.sigmoid(y)
|
49 |
+
return x * y
|
50 |
+
|
51 |
+
# Spatial Attention Block (SAB)
|
52 |
+
class SAB(nn.Module):
|
53 |
+
def __init__(self, n_feat, kernel_size, reduction, bias, act):
|
54 |
+
super(SAB, self).__init__()
|
55 |
+
modules_body = [conv(n_feat, n_feat, kernel_size, bias=bias), act, conv(n_feat, n_feat, kernel_size, bias=bias)]
|
56 |
+
self.body = nn.Sequential(*modules_body)
|
57 |
+
self.SA = SALayer(kernel_size=7)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
res = self.body(x)
|
61 |
+
res = self.SA(res)
|
62 |
+
res += x
|
63 |
+
return res
|
64 |
+
|
65 |
+
##########################################################################
|
66 |
+
## Pixel Attention
|
67 |
+
class PALayer(nn.Module):
|
68 |
+
def __init__(self, channel, reduction=16, bias=False):
|
69 |
+
super(PALayer, self).__init__()
|
70 |
+
self.pa = nn.Sequential(
|
71 |
+
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias),
|
72 |
+
nn.ReLU(inplace=True),
|
73 |
+
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias), # channel <-> 1
|
74 |
+
nn.Sigmoid()
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
y = self.pa(x)
|
79 |
+
return x * y
|
80 |
+
|
81 |
+
## Pixel Attention Block (PAB)
|
82 |
+
class PAB(nn.Module):
|
83 |
+
def __init__(self, n_feat, kernel_size, reduction, bias, act):
|
84 |
+
super(PAB, self).__init__()
|
85 |
+
modules_body = [conv(n_feat, n_feat, kernel_size, bias=bias), act, conv(n_feat, n_feat, kernel_size, bias=bias)]
|
86 |
+
self.PA = PALayer(n_feat, reduction, bias=bias)
|
87 |
+
self.body = nn.Sequential(*modules_body)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
res = self.body(x)
|
91 |
+
res = self.PA(res)
|
92 |
+
res += x
|
93 |
+
return res
|
94 |
+
|
95 |
+
##########################################################################
|
96 |
+
## Channel Attention Layer
|
97 |
+
class CALayer(nn.Module):
|
98 |
+
def __init__(self, channel, reduction=16, bias=False):
|
99 |
+
super(CALayer, self).__init__()
|
100 |
+
# global average pooling: feature --> point
|
101 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
102 |
+
# feature channel downscale and upscale --> channel weight
|
103 |
+
self.conv_du = nn.Sequential(
|
104 |
+
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias),
|
105 |
+
nn.ReLU(inplace=True),
|
106 |
+
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias),
|
107 |
+
nn.Sigmoid()
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
y = self.avg_pool(x)
|
112 |
+
y = self.conv_du(y)
|
113 |
+
return x * y
|
114 |
+
|
115 |
+
## Channel Attention Block (CAB)
|
116 |
+
class CAB(nn.Module):
|
117 |
+
def __init__(self, n_feat, kernel_size, reduction, bias, act):
|
118 |
+
super(CAB, self).__init__()
|
119 |
+
modules_body = [conv(n_feat, n_feat, kernel_size, bias=bias), act, conv(n_feat, n_feat, kernel_size, bias=bias)]
|
120 |
+
|
121 |
+
self.CA = CALayer(n_feat, reduction, bias=bias)
|
122 |
+
self.body = nn.Sequential(*modules_body)
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
res = self.body(x)
|
126 |
+
res = self.CA(res)
|
127 |
+
res += x
|
128 |
+
return res
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
import time
|
133 |
+
from thop import profile
|
134 |
+
# layer = CAB(64, 3, 4, False, nn.PReLU())
|
135 |
+
layer = PAB(64, 3, 4, False, nn.PReLU())
|
136 |
+
# layer = SAB(64, 3, 4, False, nn.PReLU())
|
137 |
+
for idx, m in enumerate(layer.modules()):
|
138 |
+
print(idx, "-", m)
|
139 |
+
s = time.time()
|
140 |
+
|
141 |
+
rgb = torch.ones(1, 64, 256, 256, dtype=torch.float, requires_grad=False)
|
142 |
+
out = layer(rgb)
|
143 |
+
flops, params = profile(layer, inputs=(rgb,))
|
144 |
+
print('parameters:', params)
|
145 |
+
print('flops', flops)
|
146 |
+
print('time: {:.4f}ms'.format((time.time()-s)*10))
|