52Hz commited on
Commit
d625d36
·
1 Parent(s): 2eccf8e

Upload demo.py

Browse files
Files changed (1) hide show
  1. demo.py +89 -0
demo.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torchvision.transforms.functional as TF
5
+ from PIL import Image
6
+ import os
7
+ import utils
8
+ from skimage import img_as_ubyte
9
+ from collections import OrderedDict
10
+ from natsort import natsorted
11
+ from glob import glob
12
+ import cv2
13
+ import argparse
14
+ from model.CMFNet import CMFNet
15
+
16
+ model = CMFNet()
17
+
18
+ parser = argparse.ArgumentParser(description='Demo Image Restoration')
19
+ parser.add_argument('--input_dir', default='./demo_samples/deraindrop', type=str, help='Input images folder')
20
+ parser.add_argument('--result_dir', default='./demo_results', type=str, help='Directory for results')
21
+ parser.add_argument('--weights', default='./pretrained_model/deraindrop_DeRainDrop_CMFNet.pth', type=str, help='Path to weights')
22
+
23
+ args = parser.parse_args()
24
+
25
+ def save_img(filepath, img):
26
+ cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
27
+
28
+ def load_checkpoint(model, weights):
29
+ checkpoint = torch.load(weights)
30
+ try:
31
+ model.load_state_dict(checkpoint["state_dict"])
32
+ except:
33
+ state_dict = checkpoint["state_dict"]
34
+ new_state_dict = OrderedDict()
35
+ for k, v in state_dict.items():
36
+ name = k[7:] # remove `module.`
37
+ new_state_dict[name] = v
38
+ model.load_state_dict(new_state_dict)
39
+
40
+ inp_dir = args.input_dir
41
+ out_dir = args.result_dir
42
+
43
+ os.makedirs(out_dir, exist_ok=True)
44
+
45
+ files = natsorted(glob(os.path.join(inp_dir, '*.jpg'))
46
+ + glob(os.path.join(inp_dir, '*.JPG'))
47
+ + glob(os.path.join(inp_dir, '*.png'))
48
+ + glob(os.path.join(inp_dir, '*.PNG')))
49
+
50
+ if len(files) == 0:
51
+ raise Exception(f"No files found at {inp_dir}")
52
+
53
+ # Load corresponding model architecture and weights
54
+ model = CMFNet()
55
+ model.cuda()
56
+
57
+ load_checkpoint(model, args.weights)
58
+ model.eval()
59
+
60
+ img_multiple_of = 8
61
+ print('restoring images......')
62
+ for file_ in files:
63
+ img = Image.open(file_).convert('RGB')
64
+ input_ = TF.to_tensor(img).unsqueeze(0).cuda()
65
+
66
+ # Pad the input if not_multiple_of 8
67
+ h, w = input_.shape[2], input_.shape[3]
68
+ H, W = ((h + img_multiple_of) // img_multiple_of) * img_multiple_of, (
69
+ (w + img_multiple_of) // img_multiple_of) * img_multiple_of
70
+ padh = H - h if h % img_multiple_of != 0 else 0
71
+ padw = W - w if w % img_multiple_of != 0 else 0
72
+ input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
73
+
74
+ with torch.no_grad():
75
+ restored = model(input_)
76
+ restored = restored[4]
77
+ restored = torch.clamp(restored, 0, 1)
78
+
79
+ # Un-pad the output
80
+ restored = restored[:, :, :h, :w]
81
+
82
+ restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
83
+ restored = img_as_ubyte(restored[0])
84
+
85
+ f = os.path.splitext(os.path.split(file_)[-1])[0]
86
+ save_img((os.path.join(out_dir, f + '.png')), restored)
87
+
88
+ print(f"Files saved at {out_dir}")
89
+ print('finish !')