Spaces:
Running
Running
Delete demo.py
Browse files
demo.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torchvision.transforms.functional as TF
|
5 |
-
from PIL import Image
|
6 |
-
import os
|
7 |
-
import utils
|
8 |
-
from skimage import img_as_ubyte
|
9 |
-
from collections import OrderedDict
|
10 |
-
from natsort import natsorted
|
11 |
-
from glob import glob
|
12 |
-
import cv2
|
13 |
-
import argparse
|
14 |
-
from model.CMFNet import CMFNet
|
15 |
-
|
16 |
-
model = CMFNet()
|
17 |
-
|
18 |
-
parser = argparse.ArgumentParser(description='Demo Image Restoration')
|
19 |
-
parser.add_argument('--input_dir', default='./demo_samples/deraindrop', type=str, help='Input images folder')
|
20 |
-
parser.add_argument('--result_dir', default='./demo_results', type=str, help='Directory for results')
|
21 |
-
parser.add_argument('--weights', default='./pretrained_model/deraindrop_DeRainDrop_CMFNet.pth', type=str, help='Path to weights')
|
22 |
-
|
23 |
-
args = parser.parse_args()
|
24 |
-
|
25 |
-
def save_img(filepath, img):
|
26 |
-
cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
27 |
-
|
28 |
-
def load_checkpoint(model, weights):
|
29 |
-
checkpoint = torch.load(weights)
|
30 |
-
try:
|
31 |
-
model.load_state_dict(checkpoint["state_dict"])
|
32 |
-
except:
|
33 |
-
state_dict = checkpoint["state_dict"]
|
34 |
-
new_state_dict = OrderedDict()
|
35 |
-
for k, v in state_dict.items():
|
36 |
-
name = k[7:] # remove `module.`
|
37 |
-
new_state_dict[name] = v
|
38 |
-
model.load_state_dict(new_state_dict)
|
39 |
-
|
40 |
-
inp_dir = args.input_dir
|
41 |
-
out_dir = args.result_dir
|
42 |
-
|
43 |
-
os.makedirs(out_dir, exist_ok=True)
|
44 |
-
|
45 |
-
files = natsorted(glob(os.path.join(inp_dir, '*.jpg'))
|
46 |
-
+ glob(os.path.join(inp_dir, '*.JPG'))
|
47 |
-
+ glob(os.path.join(inp_dir, '*.png'))
|
48 |
-
+ glob(os.path.join(inp_dir, '*.PNG')))
|
49 |
-
|
50 |
-
if len(files) == 0:
|
51 |
-
raise Exception(f"No files found at {inp_dir}")
|
52 |
-
|
53 |
-
# Load corresponding model architecture and weights
|
54 |
-
model = CMFNet()
|
55 |
-
model.cuda()
|
56 |
-
|
57 |
-
load_checkpoint(model, args.weights)
|
58 |
-
model.eval()
|
59 |
-
|
60 |
-
img_multiple_of = 8
|
61 |
-
print('restoring images......')
|
62 |
-
for file_ in files:
|
63 |
-
img = Image.open(file_).convert('RGB')
|
64 |
-
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
65 |
-
|
66 |
-
# Pad the input if not_multiple_of 8
|
67 |
-
h, w = input_.shape[2], input_.shape[3]
|
68 |
-
H, W = ((h + img_multiple_of) // img_multiple_of) * img_multiple_of, (
|
69 |
-
(w + img_multiple_of) // img_multiple_of) * img_multiple_of
|
70 |
-
padh = H - h if h % img_multiple_of != 0 else 0
|
71 |
-
padw = W - w if w % img_multiple_of != 0 else 0
|
72 |
-
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
|
73 |
-
|
74 |
-
with torch.no_grad():
|
75 |
-
restored = model(input_)
|
76 |
-
restored = restored[4]
|
77 |
-
restored = torch.clamp(restored, 0, 1)
|
78 |
-
|
79 |
-
# Un-pad the output
|
80 |
-
restored = restored[:, :, :h, :w]
|
81 |
-
|
82 |
-
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
83 |
-
restored = img_as_ubyte(restored[0])
|
84 |
-
|
85 |
-
f = os.path.splitext(os.path.split(file_)[-1])[0]
|
86 |
-
save_img((os.path.join(out_dir, f + '.png')), restored)
|
87 |
-
|
88 |
-
print(f"Files saved at {out_dir}")
|
89 |
-
print('finish !')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|