import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms.functional as TF from PIL import Image import os import utils from skimage import img_as_ubyte from collections import OrderedDict from natsort import natsorted from glob import glob import cv2 import argparse from model.CMFNet import CMFNet model = CMFNet() parser = argparse.ArgumentParser(description='Demo Image Restoration') parser.add_argument('--input_dir', default='./demo_samples/deraindrop', type=str, help='Input images folder') parser.add_argument('--result_dir', default='./demo_results', type=str, help='Directory for results') parser.add_argument('--weights', default='./pretrained_model/deraindrop_DeRainDrop_CMFNet.pth', type=str, help='Path to weights') args = parser.parse_args() def save_img(filepath, img): cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) def load_checkpoint(model, weights): checkpoint = torch.load(weights) try: model.load_state_dict(checkpoint["state_dict"]) except: state_dict = checkpoint["state_dict"] new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v model.load_state_dict(new_state_dict) inp_dir = args.input_dir out_dir = args.result_dir os.makedirs(out_dir, exist_ok=True) files = natsorted(glob(os.path.join(inp_dir, '*.jpg')) + glob(os.path.join(inp_dir, '*.JPG')) + glob(os.path.join(inp_dir, '*.png')) + glob(os.path.join(inp_dir, '*.PNG'))) if len(files) == 0: raise Exception(f"No files found at {inp_dir}") # Load corresponding model architecture and weights model = CMFNet() model.cuda() load_checkpoint(model, args.weights) model.eval() img_multiple_of = 8 print('restoring images......') for file_ in files: img = Image.open(file_).convert('RGB') input_ = TF.to_tensor(img).unsqueeze(0).cuda() # Pad the input if not_multiple_of 8 h, w = input_.shape[2], input_.shape[3] H, W = ((h + img_multiple_of) // img_multiple_of) * img_multiple_of, ( (w + img_multiple_of) // img_multiple_of) * img_multiple_of padh = H - h if h % img_multiple_of != 0 else 0 padw = W - w if w % img_multiple_of != 0 else 0 input_ = F.pad(input_, (0, padw, 0, padh), 'reflect') with torch.no_grad(): restored = model(input_) restored = restored[4] restored = torch.clamp(restored, 0, 1) # Un-pad the output restored = restored[:, :, :h, :w] restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy() restored = img_as_ubyte(restored[0]) f = os.path.splitext(os.path.split(file_)[-1])[0] save_img((os.path.join(out_dir, f + '.png')), restored) print(f"Files saved at {out_dir}") print('finish !')