AI-ANK's picture
Upload 2 files
3e7ad82
import streamlit as st
import extra_streamlit_components as stx
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from io import BytesIO
import replicate
from llama_index.llms.palm import PaLM
from llama_index import ServiceContext, VectorStoreIndex, Document
from llama_index.memory import ChatMemoryBuffer
import os
import datetime
# Set up the title of the application
#st.title("PaLM-Kosmos-Vision")
st.set_page_config(layout="wide")
st.write("My version of ChatGPT vision. You can upload an image and start chatting with the LLM about the image")
# Sidebar
st.sidebar.markdown('## Created By')
st.sidebar.markdown("""
[Harshad Suryawanshi](https://www.linkedin.com/in/harshadsuryawanshi/)
""")
st.sidebar.markdown('## Other Projects')
st.sidebar.markdown("""
- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
""")
st.sidebar.markdown('## Disclaimer')
st.sidebar.markdown("""
This application is a conceptual prototype created to demonstrate the potential of Large Language Models (LLMs) in generating equity research reports. The contents generated by this application are purely illustrative and should not be construed as financial advice, endorsements, or recommendations. The author and the application do not provide any guarantee regarding the accuracy, completeness, or timeliness of the information provided.
""")
# Initialize the cookie manager
cookie_manager = stx.CookieManager()
# Function to get image caption via Kosmos2.
@st.cache_data
def get_image_caption(image_data):
input_data = {
"image": image_data,
"description_type": "Brief"
}
output = replicate.run(
"lucataco/kosmos-2:3e7b211c29c092f4bcc8853922cc986baa52efe255876b80cac2c2fbb4aff805",
input=input_data
)
# Split the output string on the newline character and take the first item
text_description = output.split('\n\n')[0]
return text_description
# Function to create the chat engine.
@st.cache_resource
def create_chat_engine(img_desc, api_key):
llm = PaLM(api_key=api_key)
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local")
doc = Document(text=img_desc)
index = VectorStoreIndex.from_documents([doc], service_context=service_context)
chatmemory = ChatMemoryBuffer.from_defaults(token_limit=1500)
chat_engine = index.as_chat_engine(
chat_mode="context",
system_prompt=(
f"You are a chatbot, able to have normal interactions, as well as talk. "
"You always answer in great detail and are polite. Your responses always descriptive. "
"Your job is to talk about an image the user has uploaded. Image description: {img_desc}."
),
verbose=True,
memory=chatmemory
)
return chat_engine
# Clear chat function
def clear_chat():
if "messages" in st.session_state:
del st.session_state.messages
if "image_file" in st.session_state:
del st.session_state.image_file
# Callback function to clear the chat when a new image is uploaded
def on_image_upload():
clear_chat()
# Retrieve the message count from cookies
message_count = cookie_manager.get(cookie='message_count')
if message_count is None:
message_count = 0
else:
message_count = int(message_count)
# If the message limit has been reached, disable the inputs
if message_count >= 20:
st.error("Notice: The maximum message limit for this demo version has been reached.")
# Disabling the uploader and input by not displaying them
image_uploader_placeholder = st.empty() # Placeholder for the uploader
chat_input_placeholder = st.empty() # Placeholder for the chat input
else:
# Add a clear chat button
if st.button("Clear Chat"):
clear_chat()
# Image upload section.
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload)
if image_file:
# Display the uploaded image at a standard width.
st.image(image_file, caption='Uploaded Image.', width=200)
# Process the uploaded image to get a caption.
image_data = BytesIO(image_file.getvalue())
img_desc = get_image_caption(image_data)
st.write("Image Uploaded Successfully. Ask me anything about it.")
# Initialize the chat engine with the image description.
chat_engine = create_chat_engine(img_desc, os.environ["GOOGLE_API_KEY"])
# Initialize session state for messages if it doesn't exist
if "messages" not in st.session_state:
st.session_state.messages = []
# Display previous messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle new user input
user_input = st.chat_input("Ask me about the image:", key="chat_input")
if user_input:
# Append user message to the session state
st.session_state.messages.append({"role": "user", "content": user_input})
# Display user message immediately
with st.chat_message("user"):
st.markdown(user_input)
# Call the chat engine to get the response if an image has been uploaded
if image_file and user_input:
try:
with st.spinner('Waiting for the chat engine to respond...'):
# Get the response from your chat engine
response = chat_engine.chat(user_input)
# Append assistant message to the session state
st.session_state.messages.append({"role": "assistant", "content": response})
# Display the assistant message
with st.chat_message("assistant"):
st.markdown(response)
except Exception as e:
st.error(f'An error occurred.')
# Optionally, you can choose to break the flow here if a critical error happens
# return
# Increment the message count and update the cookie
message_count += 1
cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30))
# Set Replicate and Google API keys
os.environ['REPLICATE_API_TOKEN'] = st.secrets['REPLICATE_API_TOKEN']
os.environ["GOOGLE_API_KEY"] = st.secrets['GOOGLE_API_KEY']