Spaces:
Paused
Paused
# ************************************************************************* | |
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo- | |
# difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B- | |
# ytedance Inc.. | |
# ************************************************************************* | |
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
TODO: | |
1. support multi-controlnet | |
2. [DONE] support DDIM inversion | |
3. support Prompt-to-prompt | |
""" | |
import inspect, math | |
from typing import Callable, List, Optional, Union | |
from dataclasses import dataclass | |
from PIL import Image | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
from tqdm import tqdm | |
from diffusers.utils import is_accelerate_available | |
from packaging import version | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.models import AutoencoderKL | |
from diffusers.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import ( | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from diffusers.utils import deprecate, logging, BaseOutput | |
from einops import rearrange | |
from magicanimate.models.unet_controlnet import UNet3DConditionModel | |
from magicanimate.models.controlnet import ControlNetModel | |
from magicanimate.models.mutual_self_attention import ReferenceAttentionControl | |
from magicanimate.pipelines.context import ( | |
get_context_scheduler, | |
get_total_steps | |
) | |
from magicanimate.utils.util import get_tensor_interpolation_method | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class AnimationPipelineOutput(BaseOutput): | |
videos: Union[torch.Tensor, np.ndarray] | |
class AnimationPipeline(DiffusionPipeline): | |
_optional_components = [] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet3DConditionModel, | |
controlnet: ControlNetModel, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
) | |
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["clip_sample"] = False | |
scheduler._internal_dict = FrozenDict(new_config) | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
def enable_vae_slicing(self): | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
self.vae.disable_slicing() | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
if is_accelerate_available(): | |
from accelerate import cpu_offload | |
else: | |
raise ImportError("Please install accelerate via `pip install accelerate`") | |
device = torch.device(f"cuda:{gpu_id}") | |
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
if cpu_offloaded_model is not None: | |
cpu_offload(cpu_offloaded_model, device) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
text_embeddings = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
text_embeddings = text_embeddings[0] | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = text_embeddings.shape | |
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
uncond_embeddings = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
uncond_embeddings = uncond_embeddings[0] | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def decode_latents(self, latents, rank, decoder_consistency=None): | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
# video = self.vae.decode(latents).sample | |
video = [] | |
for frame_idx in tqdm(range(latents.shape[0]), disable=(rank!=0)): | |
if decoder_consistency is not None: | |
video.append(decoder_consistency(latents[frame_idx:frame_idx+1])) | |
else: | |
video.append(self.vae.decode(latents[frame_idx:frame_idx+1]).sample) | |
video = torch.cat(video) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs(self, prompt, height, width, callback_steps): | |
if not isinstance(prompt, str) and not isinstance(prompt, list): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None, clip_length=16): | |
shape = (batch_size, num_channels_latents, clip_length, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
rand_device = "cpu" if device.type == "mps" else device | |
if isinstance(generator, list): | |
latents = [ | |
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0).to(device) | |
else: | |
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
latents = latents.repeat(1, 1, video_length//clip_length, 1, 1) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def prepare_condition(self, condition, num_videos_per_prompt, device, dtype, do_classifier_free_guidance): | |
# prepare conditions for controlnet | |
condition = torch.from_numpy(condition.copy()).to(device=device, dtype=dtype) / 255.0 | |
condition = torch.stack([condition for _ in range(num_videos_per_prompt)], dim=0) | |
condition = rearrange(condition, 'b f h w c -> (b f) c h w').clone() | |
if do_classifier_free_guidance: | |
condition = torch.cat([condition] * 2) | |
return condition | |
def next_step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
x: torch.FloatTensor, | |
eta=0., | |
verbose=False | |
): | |
""" | |
Inverse sampling for DDIM Inversion | |
""" | |
if verbose: | |
print("timestep: ", timestep) | |
next_step = timestep | |
timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999) | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod | |
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step] | |
beta_prod_t = 1 - alpha_prod_t | |
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 | |
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output | |
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir | |
return x_next, pred_x0 | |
def images2latents(self, images, dtype): | |
""" | |
Convert RGB image to VAE latents | |
""" | |
device = self._execution_device | |
images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
images = rearrange(images, "f h w c -> f c h w").to(device) | |
latents = [] | |
for frame_idx in range(images.shape[0]): | |
latents.append(self.vae.encode(images[frame_idx:frame_idx+1])['latent_dist'].mean * 0.18215) | |
latents = torch.cat(latents) | |
return latents | |
def invert( | |
self, | |
image: torch.Tensor, | |
prompt, | |
num_inference_steps=20, | |
num_actual_inference_steps=10, | |
eta=0.0, | |
return_intermediates=False, | |
**kwargs): | |
""" | |
Adapted from: https://github.com/Yujun-Shi/DragDiffusion/blob/main/drag_pipeline.py#L440 | |
invert a real image into noise map with determinisc DDIM inversion | |
""" | |
device = self._execution_device | |
batch_size = image.shape[0] | |
if isinstance(prompt, list): | |
if batch_size == 1: | |
image = image.expand(len(prompt), -1, -1, -1) | |
elif isinstance(prompt, str): | |
if batch_size > 1: | |
prompt = [prompt] * batch_size | |
# text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt" | |
) | |
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0] | |
print("input text embeddings :", text_embeddings.shape) | |
# define initial latents | |
latents = self.images2latents(image) | |
print("latents shape: ", latents.shape) | |
# interative sampling | |
self.scheduler.set_timesteps(num_inference_steps) | |
print("Valid timesteps: ", reversed(self.scheduler.timesteps)) | |
latents_list = [latents] | |
pred_x0_list = [latents] | |
for i, t in enumerate(tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")): | |
if num_actual_inference_steps is not None and i >= num_actual_inference_steps: | |
continue | |
model_inputs = latents | |
# predict the noise | |
# NOTE: the u-net here is UNet3D, therefore the model_inputs need to be of shape (b c f h w) | |
model_inputs = rearrange(model_inputs, "f c h w -> 1 c f h w") | |
noise_pred = self.unet(model_inputs, t, encoder_hidden_states=text_embeddings).sample | |
noise_pred = rearrange(noise_pred, "b c f h w -> (b f) c h w") | |
# compute the previous noise sample x_t-1 -> x_t | |
latents, pred_x0 = self.next_step(noise_pred, t, latents) | |
latents_list.append(latents) | |
pred_x0_list.append(pred_x0) | |
if return_intermediates: | |
# return the intermediate laters during inversion | |
return latents, latents_list | |
return latents | |
def interpolate_latents(self, latents: torch.Tensor, interpolation_factor:int, device ): | |
if interpolation_factor < 2: | |
return latents | |
new_latents = torch.zeros( | |
(latents.shape[0],latents.shape[1],((latents.shape[2]-1) * interpolation_factor)+1, latents.shape[3],latents.shape[4]), | |
device=latents.device, | |
dtype=latents.dtype, | |
) | |
org_video_length = latents.shape[2] | |
rate = [i/interpolation_factor for i in range(interpolation_factor)][1:] | |
new_index = 0 | |
v0 = None | |
v1 = None | |
for i0,i1 in zip( range( org_video_length ),range( org_video_length )[1:] ): | |
v0 = latents[:,:,i0,:,:] | |
v1 = latents[:,:,i1,:,:] | |
new_latents[:,:,new_index,:,:] = v0 | |
new_index += 1 | |
for f in rate: | |
v = get_tensor_interpolation_method()(v0.to(device=device),v1.to(device=device),f) | |
new_latents[:,:,new_index,:,:] = v.to(latents.device) | |
new_index += 1 | |
new_latents[:,:,new_index,:,:] = v1 | |
new_index += 1 | |
return new_latents | |
def select_controlnet_res_samples(self, controlnet_res_samples_cache_dict, context, do_classifier_free_guidance, b, f): | |
_down_block_res_samples = [] | |
_mid_block_res_sample = [] | |
for i in np.concatenate(np.array(context)): | |
_down_block_res_samples.append(controlnet_res_samples_cache_dict[i][0]) | |
_mid_block_res_sample.append(controlnet_res_samples_cache_dict[i][1]) | |
down_block_res_samples = [[] for _ in range(len(controlnet_res_samples_cache_dict[i][0]))] | |
for res_t in _down_block_res_samples: | |
for i, res in enumerate(res_t): | |
down_block_res_samples[i].append(res) | |
down_block_res_samples = [torch.cat(res) for res in down_block_res_samples] | |
mid_block_res_sample = torch.cat(_mid_block_res_sample) | |
# reshape controlnet output to match the unet3d inputs | |
b = b // 2 if do_classifier_free_guidance else b | |
_down_block_res_samples = [] | |
for sample in down_block_res_samples: | |
sample = rearrange(sample, '(b f) c h w -> b c f h w', b=b, f=f) | |
if do_classifier_free_guidance: | |
sample = sample.repeat(2, 1, 1, 1, 1) | |
_down_block_res_samples.append(sample) | |
down_block_res_samples = _down_block_res_samples | |
mid_block_res_sample = rearrange(mid_block_res_sample, '(b f) c h w -> b c f h w', b=b, f=f) | |
if do_classifier_free_guidance: | |
mid_block_res_sample = mid_block_res_sample.repeat(2, 1, 1, 1, 1) | |
return down_block_res_samples, mid_block_res_sample | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
video_length: Optional[int], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "tensor", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
controlnet_condition: list = None, | |
controlnet_conditioning_scale: float = 1.0, | |
context_frames: int = 16, | |
context_stride: int = 1, | |
context_overlap: int = 4, | |
context_batch_size: int = 1, | |
context_schedule: str = "uniform", | |
init_latents: Optional[torch.FloatTensor] = None, | |
num_actual_inference_steps: Optional[int] = None, | |
appearance_encoder = None, | |
reference_control_writer = None, | |
reference_control_reader = None, | |
source_image: str = None, | |
decoder_consistency = None, | |
**kwargs, | |
): | |
""" | |
New args: | |
- controlnet_condition : condition map (e.g., depth, canny, keypoints) for controlnet | |
- controlnet_conditioning_scale : conditioning scale for controlnet | |
- init_latents : initial latents to begin with (used along with invert()) | |
- num_actual_inference_steps : number of actual inference steps (while total steps is num_inference_steps) | |
""" | |
controlnet = self.controlnet | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps) | |
# Define call parameters | |
# batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
batch_size = 1 | |
if latents is not None: | |
batch_size = latents.shape[0] | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Encode input prompt | |
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
if negative_prompt is not None: | |
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
text_embeddings = self._encode_prompt( | |
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
text_embeddings = torch.cat([text_embeddings] * context_batch_size) | |
reference_control_writer = ReferenceAttentionControl(appearance_encoder, do_classifier_free_guidance=True, mode='write', batch_size=context_batch_size) | |
reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', batch_size=context_batch_size) | |
is_dist_initialized = kwargs.get("dist", False) | |
rank = kwargs.get("rank", 0) | |
world_size = kwargs.get("world_size", 1) | |
# Prepare video | |
assert num_videos_per_prompt == 1 # FIXME: verify if num_videos_per_prompt > 1 works | |
assert batch_size == 1 # FIXME: verify if batch_size > 1 works | |
control = self.prepare_condition( | |
condition=controlnet_condition, | |
device=device, | |
dtype=controlnet.dtype, | |
num_videos_per_prompt=num_videos_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
controlnet_uncond_images, controlnet_cond_images = control.chunk(2) | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# Prepare latent variables | |
if init_latents is not None: | |
latents = rearrange(init_latents, "(b f) c h w -> b c f h w", f=video_length) | |
else: | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
video_length, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
latents_dtype = latents.dtype | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# Prepare text embeddings for controlnet | |
controlnet_text_embeddings = text_embeddings.repeat_interleave(video_length, 0) | |
_, controlnet_text_embeddings_c = controlnet_text_embeddings.chunk(2) | |
controlnet_res_samples_cache_dict = {i:None for i in range(video_length)} | |
# For img2img setting | |
if num_actual_inference_steps is None: | |
num_actual_inference_steps = num_inference_steps | |
if isinstance(source_image, str): | |
ref_image_latents = self.images2latents(np.array(Image.open(source_image).resize((width, height)))[None, :], latents_dtype).cuda() | |
elif isinstance(source_image, np.ndarray): | |
ref_image_latents = self.images2latents(source_image[None, :], latents_dtype).cuda() | |
context_scheduler = get_context_scheduler(context_schedule) | |
# Denoising loop | |
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank!=0)): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
noise_pred = torch.zeros( | |
(latents.shape[0] * (2 if do_classifier_free_guidance else 1), *latents.shape[1:]), | |
device=latents.device, | |
dtype=latents.dtype, | |
) | |
counter = torch.zeros( | |
(1, 1, latents.shape[2], 1, 1), device=latents.device, dtype=latents.dtype | |
) | |
appearance_encoder( | |
ref_image_latents.repeat(context_batch_size * (2 if do_classifier_free_guidance else 1), 1, 1, 1), | |
t, | |
encoder_hidden_states=text_embeddings, | |
return_dict=False, | |
) | |
context_queue = list(context_scheduler( | |
0, num_inference_steps, latents.shape[2], context_frames, context_stride, 0 | |
)) | |
num_context_batches = math.ceil(len(context_queue) / context_batch_size) | |
for i in range(num_context_batches): | |
context = context_queue[i*context_batch_size: (i+1)*context_batch_size] | |
# expand the latents if we are doing classifier free guidance | |
controlnet_latent_input = ( | |
torch.cat([latents[:, :, c] for c in context]) | |
.to(device) | |
) | |
controlnet_latent_input = self.scheduler.scale_model_input(controlnet_latent_input, t) | |
# prepare inputs for controlnet | |
b, c, f, h, w = controlnet_latent_input.shape | |
controlnet_latent_input = rearrange(controlnet_latent_input, "b c f h w -> (b f) c h w") | |
# controlnet inference | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
controlnet_latent_input, | |
t, | |
encoder_hidden_states=torch.cat([controlnet_text_embeddings_c[c] for c in context]), | |
controlnet_cond=torch.cat([controlnet_cond_images[c] for c in context]), | |
conditioning_scale=controlnet_conditioning_scale, | |
return_dict=False, | |
) | |
for j, k in enumerate(np.concatenate(np.array(context))): | |
controlnet_res_samples_cache_dict[k] = ([sample[j:j+1] for sample in down_block_res_samples], mid_block_res_sample[j:j+1]) | |
context_queue = list(context_scheduler( | |
0, num_inference_steps, latents.shape[2], context_frames, context_stride, context_overlap | |
)) | |
num_context_batches = math.ceil(len(context_queue) / context_batch_size) | |
global_context = [] | |
for i in range(num_context_batches): | |
global_context.append(context_queue[i*context_batch_size: (i+1)*context_batch_size]) | |
for context in global_context[rank::world_size]: | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents[:, :, c] for c in context]) | |
.to(device) | |
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1) | |
) | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
b, c, f, h, w = latent_model_input.shape | |
down_block_res_samples, mid_block_res_sample = self.select_controlnet_res_samples( | |
controlnet_res_samples_cache_dict, | |
context, | |
do_classifier_free_guidance, | |
b, f | |
) | |
reference_control_reader.update(reference_control_writer) | |
# predict the noise residual | |
pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings[:b], | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
return_dict=False, | |
)[0] | |
reference_control_reader.clear() | |
pred_uc, pred_c = pred.chunk(2) | |
pred = torch.cat([pred_uc.unsqueeze(0), pred_c.unsqueeze(0)]) | |
for j, c in enumerate(context): | |
noise_pred[:, :, c] = noise_pred[:, :, c] + pred[:, j] | |
counter[:, :, c] = counter[:, :, c] + 1 | |
if is_dist_initialized: | |
noise_pred_gathered = [torch.zeros_like(noise_pred) for _ in range(world_size)] | |
if rank == 0: | |
dist.gather(tensor=noise_pred, gather_list=noise_pred_gathered, dst=0) | |
else: | |
dist.gather(tensor=noise_pred, gather_list=[], dst=0) | |
dist.barrier() | |
if rank == 0: | |
for k in range(1, world_size): | |
for context in global_context[k::world_size]: | |
for j, c in enumerate(context): | |
noise_pred[:, :, c] = noise_pred[:, :, c] + noise_pred_gathered[k][:, :, c] | |
counter[:, :, c] = counter[:, :, c] + 1 | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
if is_dist_initialized: | |
dist.broadcast(latents, 0) | |
dist.barrier() | |
reference_control_writer.clear() | |
interpolation_factor = 1 | |
latents = self.interpolate_latents(latents, interpolation_factor, device) | |
# Post-processing | |
video = self.decode_latents(latents, rank, decoder_consistency=decoder_consistency) | |
if is_dist_initialized: | |
dist.barrier() | |
# Convert to tensor | |
if output_type == "tensor": | |
video = torch.from_numpy(video) | |
if not return_dict: | |
return video | |
return AnimationPipelineOutput(videos=video) | |