Spaces:
Running
Running
File size: 16,709 Bytes
68f98f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import os
from io import BytesIO
import pandas as pd
from fastapi import APIRouter, UploadFile, File, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from azure.core.credentials import AzureKeyCredential
from azure.ai.formrecognizer import DocumentAnalysisClient
from dotenv import load_dotenv
from docx import Document
import re
# Load environment variables
load_dotenv()
router = APIRouter()
@router.post("/convert-to-markdown")
async def convert_to_markdown(file: UploadFile = File(...)):
"""
Convert a PDF file to markdown format.
Args:
file: The PDF file to convert
Returns:
StreamingResponse: Markdown file
"""
try:
# Read the uploaded file content
content = await file.read()
# Save the content to a temporary file
temp_pdf_path = "temp.pdf"
with open(temp_pdf_path, "wb") as f:
f.write(content)
# Analyze the document
result = analyze_document(temp_pdf_path)
# Create markdown file
temp_md_path = "temp.md"
create_markdown_file(result, temp_md_path)
# Read the markdown file
with open(temp_md_path, "rb") as f:
markdown_content = f.read()
# Clean up temporary files
os.remove(temp_pdf_path)
os.remove(temp_md_path)
# Return the markdown file as a download
return StreamingResponse(
BytesIO(markdown_content),
media_type="text/markdown",
headers={
"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}.md"
}
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.post("/convert-to-excel")
async def convert_to_excel(file: UploadFile = File(...)):
"""
Convert tables from markdown to Excel format.
Args:
file: The markdown file to convert
Returns:
StreamingResponse: Excel file containing all tables
"""
try:
# Read the markdown content
content = await file.read()
markdown_text = content.decode('utf-8')
# Extract tables from markdown
tables = extract_tables_from_markdown(markdown_text)
if not tables:
raise HTTPException(status_code=400, detail="No tables found in the markdown content")
# Create Excel file
excel_buffer = create_excel_from_markdown_tables(tables)
# Return the Excel file as a download
return StreamingResponse(
excel_buffer,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
headers={
"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}_tables.xlsx"
}
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.post("/convert-to-word")
async def convert_to_word(file: UploadFile = File(...)):
"""
Convert markdown to Word document format.
Args:
file: The markdown file to convert
Returns:
StreamingResponse: Word document file
"""
try:
# Read the markdown content
content = await file.read()
markdown_text = content.decode('utf-8')
# Create Word file
temp_docx_path = "temp.docx"
create_word_from_markdown(markdown_text, temp_docx_path)
# Read the Word file
with open(temp_docx_path, "rb") as f:
word_content = f.read()
# Clean up temporary file
os.remove(temp_docx_path)
# Return the Word file as a download
return StreamingResponse(
BytesIO(word_content),
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
headers={
"Content-Disposition": f"attachment; filename={file.filename.rsplit('.', 1)[0]}.docx"
}
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def analyze_document(file_path):
"""Analyze document using Azure Form Recognizer"""
endpoint = "https://aal-ocr-ai-azureapi.cognitiveservices.azure.com/"
key = os.getenv("AZURE_FORM_RECOGNIZER_KEY")
document_analysis_client = DocumentAnalysisClient(
endpoint=endpoint, credential=AzureKeyCredential(key)
)
with open(file_path, "rb") as f:
poller = document_analysis_client.begin_analyze_document(
"prebuilt-layout", document=f
)
result = poller.result()
return result
def extract_tables_from_markdown(markdown_text):
"""Extract tables from markdown text"""
tables = []
current_table = []
lines = markdown_text.split('\n')
in_table = False
for line in lines:
if '|' in line:
# Skip separator lines (e.g., |---|---|)
if re.match(r'^[\s|:-]+$', line):
continue
# Process table row
cells = [cell.strip() for cell in line.split('|')[1:-1]]
if cells:
if not in_table:
in_table = True
current_table.append(cells)
else:
if in_table:
if current_table:
tables.append(current_table)
current_table = []
in_table = False
# Add the last table if exists
if current_table:
tables.append(current_table)
return tables
def create_excel_from_markdown_tables(tables):
"""Create Excel file from markdown tables"""
excel_buffer = BytesIO()
with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
for i, table in enumerate(tables):
if table:
# Convert table to DataFrame
df = pd.DataFrame(table[1:], columns=table[0])
# Save to Excel sheet
sheet_name = f"Table_{i+1}"
df.to_excel(writer, sheet_name=sheet_name, index=False)
excel_buffer.seek(0)
return excel_buffer
def create_word_from_markdown(markdown_text, output_file):
"""Create Word document from markdown text"""
doc = Document()
lines = markdown_text.split('\n')
current_table = []
in_table = False
for line in lines:
# Handle headers
if line.startswith('#'):
level = len(line.split()[0]) # Count the number of '#'
text = line.lstrip('#').strip()
doc.add_heading(text, level=min(level, 9))
# Handle tables
elif '|' in line:
# Skip separator lines
if re.match(r'^[\s|:-]+$', line):
continue
# Process table row
cells = [cell.strip() for cell in line.split('|')[1:-1]]
if cells:
if not in_table:
in_table = True
current_table = []
current_table.append(cells)
# Handle end of table
elif in_table:
if current_table:
table = doc.add_table(rows=len(current_table), cols=len(current_table[0]))
table.style = 'Table Grid'
for i, row in enumerate(current_table):
for j, cell in enumerate(row):
table.cell(i, j).text = cell
doc.add_paragraph() # Add space after table
current_table = []
in_table = False
# Handle checkbox lists
elif line.strip().startswith('- ['):
p = doc.add_paragraph()
run = p.add_run()
if 'x' in line or 'X' in line:
run.add_text("β " + line[5:].strip())
else:
run.add_text("β " + line[5:].strip())
# Handle regular paragraphs
elif line.strip():
doc.add_paragraph(line.strip())
# Handle the last table if exists
if in_table and current_table:
table = doc.add_table(rows=len(current_table), cols=len(current_table[0]))
table.style = 'Table Grid'
for i, row in enumerate(current_table):
for j, cell in enumerate(row):
table.cell(i, j).text = cell
doc.save(output_file)
def create_markdown_file(result, output_file):
"""Create markdown file from analysis result"""
with open(output_file, 'w', encoding='utf-8') as md_file:
for page in result.pages:
# md_file.write(f"### Page {page.page_number}\n\n")
elements = []
elements.extend([(paragraph.bounding_regions[0].polygon[0].y + paragraph.bounding_regions[0].polygon[0].x*0.05, 'paragraph', paragraph)
for paragraph in result.paragraphs if paragraph.bounding_regions[0].page_number == page.page_number])
elements.sort(key=lambda x: x[0])
page_width = page.width / 2
min_distance = float('inf')
title_paragraph = None
for element in elements[:5]:
if element[1] == 'paragraph':
paragraph = element[2]
midpoint_x = (paragraph.bounding_regions[0].polygon[0].x + paragraph.bounding_regions[0].polygon[1].x) / 2
midpoint_y = paragraph.bounding_regions[0].polygon[0].y
distance = ((midpoint_x - page_width) ** 2 + midpoint_y ** 2) ** 0.5
if distance < min_distance:
min_distance = distance
title_paragraph = paragraph
if title_paragraph:
elements = [element for element in elements if element[2] != title_paragraph]
md_file.write(f"# {title_paragraph.content}\n\n")
elements.extend([(table.bounding_regions[0].polygon[0].y + table.bounding_regions[0].polygon[0].x*0.05, 'table', table)
for table in result.tables if table.bounding_regions[0].page_number == page.page_number])
elements.extend([(mark.polygon[0].y + mark.polygon[0].x*0.05, 'selection_mark', mark) for mark in page.selection_marks])
elements.sort(key=lambda x: x[0])
table_cells = set()
for _, element_type, element in elements:
if element_type == 'paragraph':
if any(is_element_inside_table(element, get_table_max_polygon(table)) for table in result.tables):
continue
md_file.write(f"{element.content}\n\n")
elif element_type == 'table':
for row_idx in range(element.row_count):
row_content = "| "
for col_idx in range(element.column_count):
cell_content = ""
for cell in element.cells:
if cell.row_index == row_idx and cell.column_index == col_idx:
cell_content = cell.content
table_cells.add((cell.bounding_regions[0].polygon[0].x, cell.bounding_regions[0].polygon[0].y))
break
row_content += f"{cell_content} | "
md_file.write(row_content + "\n")
md_file.write("\n")
elif element_type == 'selection_mark':
if element.state == "selected":
md_file.write("- [x] \n\n")
else:
md_file.write("- [ ] \n\n")
def create_word_file(result, output_file):
"""Create Word document from analysis result"""
# Create a new Word document
doc = Document()
# Analyze pages
for page in result.pages:
# Combine paragraphs, tables, and selection marks in the order they appear on the page
elements = []
elements.extend([(paragraph.bounding_regions[0].polygon[0].y + paragraph.bounding_regions[0].polygon[0].x*0.01, 'paragraph', paragraph)
for paragraph in result.paragraphs if paragraph.bounding_regions[0].page_number == page.page_number])
elements.sort(key=lambda x: x[0])
# Find the paragraph which is possible to be document title
page_width = page.width / 2
min_distance = float('inf')
title_paragraph = None
for element in elements[:5]:
if element[1] == 'paragraph':
paragraph = element[2]
midpoint_x = (paragraph.bounding_regions[0].polygon[0].x + paragraph.bounding_regions[0].polygon[1].x) / 2
midpoint_y = paragraph.bounding_regions[0].polygon[0].y
distance = ((midpoint_x - page_width) ** 2 + midpoint_y ** 2) ** 0.5
if distance < min_distance:
min_distance = distance
title_paragraph = paragraph
if title_paragraph:
elements = [element for element in elements if element[2] != title_paragraph]
doc.add_heading(title_paragraph.content, level=1)
# Continuous combine paragraphs, tables, and selection marks in the order they appear on the page
elements.extend([(table.bounding_regions[0].polygon[0].y + table.bounding_regions[0].polygon[0].x*0.01, 'table', table)
for table in result.tables if table.bounding_regions[0].page_number == page.page_number])
elements.extend([(mark.polygon[0].y + mark.polygon[0].x*0.01, 'selection_mark', mark)
for mark in page.selection_marks])
# Sort elements by the sum of their horizontal and vertical positions on the page
elements.sort(key=lambda x: x[0])
# Track table cells to avoid duplicating content
table_cells = set()
for _, element_type, element in elements:
if element_type == 'paragraph':
# Skip lines that are part of a table
if any(is_element_inside_table(element, get_table_max_polygon(table)) for table in result.tables):
continue
doc.add_paragraph(element.content)
elif element_type == 'table':
table = doc.add_table(rows=element.row_count, cols=element.column_count)
table.style = 'Table Grid'
for row_idx in range(element.row_count):
row_cells = table.rows[row_idx].cells
for col_idx in range(element.column_count):
cell_content = ""
for cell in element.cells:
if cell.row_index == row_idx and cell.column_index == col_idx:
cell_content = cell.content
table_cells.add((cell.bounding_regions[0].polygon[0].x, cell.bounding_regions[0].polygon[0].y))
break
row_cells[col_idx].text = cell_content
elif element_type == 'selection_mark':
p = doc.add_paragraph()
run = p.add_run()
if element.state == "selected":
run.add_text("β ")
else:
run.add_text("β ")
# Save Word document
doc.save(output_file)
def format_polygon(polygon):
"""Format polygon coordinates to string"""
if not polygon:
return "N/A"
return ", ".join([f"[{p.x}, {p.y}]" for p in polygon])
def get_table_max_polygon(table):
"""Get the maximum polygon coordinates for a table"""
first_cell = table.cells[0]
first_coordinate = first_cell.bounding_regions[0].polygon[0]
last_cell = table.cells[-1]
last_coordinate = last_cell.bounding_regions[0].polygon[-1]
return [first_coordinate, last_coordinate]
def is_element_inside_table(element, table_max_polygon):
"""Check if an element is inside a table"""
element_x = element.bounding_regions[0].polygon[0].x
element_y = element.bounding_regions[0].polygon[0].y
first_coordinate = table_max_polygon[0]
last_coordinate = table_max_polygon[1]
return (first_coordinate.x <= element_x <= last_coordinate.x and
first_coordinate.y <= element_y <= last_coordinate.y)
|