Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,34 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, pipeline
|
4 |
-
import torch
|
5 |
|
6 |
-
# Initialize the model and tokenizer
|
7 |
model_name = "AIFS/Prometh-MOEM-V.01"
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
13 |
|
14 |
text_generation_pipeline = pipeline(
|
15 |
"text-generation",
|
16 |
model=model_name,
|
17 |
-
model_kwargs={"torch_dtype":
|
18 |
-
use_auth_token=
|
19 |
)
|
20 |
|
21 |
-
|
22 |
def generate_text(user_input):
|
23 |
messages = [{"role": "user", "content": user_input}]
|
24 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
25 |
outputs = text_generation_pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
26 |
return outputs[0]["generated_text"]
|
27 |
|
28 |
-
#
|
29 |
iface = gr.Interface(
|
30 |
fn=generate_text,
|
31 |
-
inputs=gr.
|
32 |
-
outputs=gr.
|
33 |
title="Prometh-MOEM Text Generation",
|
34 |
description="A text generation model that understands your queries and generates concise, informative responses."
|
35 |
)
|
36 |
|
37 |
-
# Run the interface
|
38 |
-
iface.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, pipeline
|
|
|
4 |
|
5 |
+
# Initialize the model and tokenizer with environment variable for HF_TOKEN
|
6 |
model_name = "AIFS/Prometh-MOEM-V.01"
|
7 |
+
hf_token = os.getenv("HF_TOKEN") # More Pythonic way to fetch environment variables
|
8 |
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
|
|
|
|
|
|
10 |
|
11 |
text_generation_pipeline = pipeline(
|
12 |
"text-generation",
|
13 |
model=model_name,
|
14 |
+
model_kwargs={"torch_dtype": "auto", "load_in_4bit": True}, # 'auto' lets PyTorch decide the most optimal dtype
|
15 |
+
use_auth_token=hf_token
|
16 |
)
|
17 |
|
|
|
18 |
def generate_text(user_input):
|
19 |
messages = [{"role": "user", "content": user_input}]
|
20 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
21 |
outputs = text_generation_pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
22 |
return outputs[0]["generated_text"]
|
23 |
|
24 |
+
# Updated Gradio interface creation to use the latest syntax
|
25 |
iface = gr.Interface(
|
26 |
fn=generate_text,
|
27 |
+
inputs=gr.Textbox(lines=2, placeholder="Type your question here..."),
|
28 |
+
outputs=gr.Textbox(),
|
29 |
title="Prometh-MOEM Text Generation",
|
30 |
description="A text generation model that understands your queries and generates concise, informative responses."
|
31 |
)
|
32 |
|
33 |
+
# Run the interface with enhanced parameters for better performance and user experience
|
34 |
+
iface.launch(enable_queue=True) # enable_queue=True for handling high traffic
|