3v324v23's picture
Add code
a84a65c
from preprocess.NAT_mel import MelNet
import os
from tqdm import tqdm
from glob import glob
import math
import pandas as pd
import argparse
from argparse import Namespace
import math
import audioread
from tqdm.contrib.concurrent import process_map
import torch
import torch.nn as nn
import torchaudio
import numpy as np
from torch.distributed import init_process_group
from torch.utils.data import Dataset,DataLoader,DistributedSampler
import torch.multiprocessing as mp
import json
class tsv_dataset(Dataset):
def __init__(self,tsv_path,sr,mode='none',hop_size = None,target_mel_length = None) -> None:
super().__init__()
if os.path.isdir(tsv_path):
files = glob(os.path.join(tsv_path,'*.tsv'))
df = pd.concat([pd.read_csv(file,sep='\t') for file in files])
else:
df = pd.read_csv(tsv_path,sep='\t')
self.audio_paths = []
self.sr = sr
self.mode = mode
self.target_mel_length = target_mel_length
self.hop_size = hop_size
for t in tqdm(df.itertuples()):
self.audio_paths.append(getattr(t,'audio_path'))
def __len__(self):
return len(self.audio_paths)
def pad_wav(self,wav):
# wav should be in shape(1,wav_len)
wav_length = wav.shape[-1]
assert wav_length > 100, "wav is too short, %s" % wav_length
segment_length = (self.target_mel_length + 1) * self.hop_size # final mel will crop the last mel, mel = mel[:,:-1]
if segment_length is None or wav_length == segment_length:
return wav
elif wav_length > segment_length:
return wav[:,:segment_length]
elif wav_length < segment_length:
temp_wav = torch.zeros((1, segment_length),dtype=torch.float32)
temp_wav[:, :wav_length] = wav
return temp_wav
def __getitem__(self, index):
audio_path = self.audio_paths[index]
wav, orisr = torchaudio.load(audio_path)
if wav.shape[0] != 1: # stereo to mono (2,wav_len) -> (1,wav_len)
wav = wav.mean(0,keepdim=True)
wav = torchaudio.functional.resample(wav, orig_freq=orisr, new_freq=self.sr)
if self.mode == 'pad':
assert self.target_mel_length is not None
wav = self.pad_wav(wav)
return audio_path,wav
def process_audio_by_tsv(rank,args):
if args.num_gpus > 1:
init_process_group(backend=args.dist_config['dist_backend'], init_method=args.dist_config['dist_url'],
world_size=args.dist_config['world_size'] * args.num_gpus, rank=rank)
sr = args.audio_sample_rate
dataset = tsv_dataset(args.tsv_path,sr = sr,mode=args.mode,hop_size=args.hop_size,target_mel_length=args.batch_max_length)
sampler = DistributedSampler(dataset,shuffle=False) if args.num_gpus > 1 else None
# batch_size must == 1,since wav_len is not equal
loader = DataLoader(dataset, sampler=sampler,batch_size=1, num_workers=16,drop_last=False)
device = torch.device('cuda:{:d}'.format(rank))
mel_net = MelNet(args.__dict__)
mel_net.to(device)
# if args.num_gpus > 1: # RuntimeError: DistributedDataParallel is not needed when a module doesn't have any parameter that requires a gradient.
# mel_net = DistributedDataParallel(mel_net, device_ids=[rank]).to(device)
root = args.save_path
loader = tqdm(loader) if rank == 0 else loader
for batch in loader:
audio_paths,wavs = batch
wavs = wavs.to(device)
if args.save_resample:
for audio_path,wav in zip(audio_paths,wavs):
psplits = audio_path.split('/')
wav_name = psplits[-1]
# save resample
resample_root,resample_name = root+f'_{sr}',wav_name[:-4]+'_audio.npy'
resample_dir_name = os.path.join(resample_root,*psplits[1:-1])
resample_path = os.path.join(resample_dir_name,resample_name)
os.makedirs(resample_dir_name,exist_ok=True)
np.save(resample_path,wav.cpu().numpy().squeeze(0))
if args.save_mel:
mode = args.mode
batch_max_length = args.batch_max_length
for audio_path,wav in zip(audio_paths,wavs):
psplits = audio_path.split('/')
wav_name = psplits[-1]
mel_root,mel_name = root,wav_name[:-4]+'_mel.npy'
mel_dir_name = os.path.join(mel_root,f'mel{mode}{sr}',*psplits[1:-1])
mel_path = os.path.join(mel_dir_name,mel_name)
if not os.path.exists(mel_path):
mel_spec = mel_net(wav).cpu().numpy().squeeze(0) # (mel_bins,mel_len)
if mel_spec.shape[1] <= batch_max_length:
if mode == 'tile': # pad is done in dataset as pad wav
n_repeat = math.ceil((batch_max_length + 1) / mel_spec.shape[1])
mel_spec = np.tile(mel_spec,reps=(1,n_repeat))
elif mode == 'none' or mode == 'pad':
pass
else:
raise ValueError(f'mode:{mode} is not supported')
mel_spec = mel_spec[:,:batch_max_length]
os.makedirs(mel_dir_name,exist_ok=True)
np.save(mel_path,mel_spec)
def split_list(i_list,num):
each_num = math.ceil(i_list / num)
result = []
for i in range(num):
s = each_num * i
e = (each_num * (i+1))
result.append(i_list[s:e])
return result
def drop_bad_wav(item):
index,path = item
try:
with audioread.audio_open(path) as f:
totalsec = f.duration
if totalsec < 0.1:
return index # index
except:
print(f"corrupted wav:{path}")
return index
return False
def drop_bad_wavs(tsv_path):# 'audioset.csv'
df = pd.read_csv(tsv_path,sep='\t')
item_list = []
for item in tqdm(df.itertuples()):
item_list.append((item[0],getattr(item,'audio_path')))
r = process_map(drop_bad_wav,item_list,max_workers=16,chunksize=16)
bad_indices = list(filter(lambda x:x!= False,r))
print(bad_indices)
with open('bad_wavs.json','w') as f:
x = [item_list[i] for i in bad_indices]
json.dump(x,f)
df = df.drop(bad_indices,axis=0)
df.to_csv(tsv_path,sep='\t',index=False)
def addmel2tsv(save_dir,tsv_path):
df = pd.read_csv(tsv_path,sep='\t')
mels = glob(f'{save_dir}/mel{args.mode}{args.audio_sample_rate}/**/*_mel.npy',recursive=True)
name2mel,idx2name,idx2mel = {},{},{}
for mel in mels:
bn = os.path.basename(mel)[:-8]# remove _mel.npy
name2mel[bn] = mel
for t in df.itertuples():
idx = int(t[0])
bn = os.path.basename(getattr(t,'audio_path'))[:-4]
idx2name[idx] = bn
for k,v in idx2name.items():
idx2mel[k] = name2mel[v]
df['mel_path'] = df.index.map(idx2mel)
df.to_csv(tsv_path,sep='\t',index=False)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument( "--tsv_path",type=str)
parser.add_argument( "--num_gpus",type=int,default=1)
parser.add_argument( "--max_duration",type=int,default=30)
return parser.parse_args()
if __name__ == '__main__':
pargs = parse_args()
tsv_path = pargs.tsv_path
if os.path.isdir(tsv_path):
files = glob(os.path.join(tsv_path,'*.tsv'))
for file in files:
drop_bad_wavs(file)
else:
drop_bad_wavs(tsv_path)
num_gpus = pargs.num_gpus
batch_max_length = int(pargs.max_duration * 62.5)# 62.5 is the mel length for 1 second
save_path = 'processed'
args = {
'audio_sample_rate': 16000,
'audio_num_mel_bins':80,
'fft_size': 1024,
'win_size': 1024,
'hop_size': 256,
'fmin': 0,
'fmax': 8000,
'batch_max_length': batch_max_length,
'tsv_path': tsv_path,
'num_gpus': num_gpus,
'mode': 'none', # pad,none,
'save_resample':False,
'save_mel' :True,
'save_path': save_path,
}
os.makedirs(save_path,exist_ok=True)
args = Namespace(**args)
args.dist_config = {
"dist_backend": "nccl",
"dist_url": "tcp://localhost:54189",
"world_size": 1
}
if args.num_gpus>1:
mp.spawn(process_audio_by_tsv,nprocs=args.num_gpus,args=(args,))
else:
process_audio_by_tsv(0,args=args)
print("proceoss mel done")
addmel2tsv(save_path,tsv_path)
print("done")