File size: 4,287 Bytes
e98f460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image

BLOCKS = {
    'content': ['down_blocks'],
    'style': ["up_blocks"],

}

controlnet_BLOCKS = {
    'content': [],
    'style': ["down_blocks"],
}


def resize_width_height(width, height, min_short_side=512, max_long_side=1024):

    if width < height:

        if width < min_short_side:
            scale_factor = min_short_side / width
            new_width = min_short_side
            new_height = int(height * scale_factor)
        else:
            new_width, new_height = width, height
    else:

        if height < min_short_side:
            scale_factor = min_short_side / height
            new_width = int(width * scale_factor)
            new_height = min_short_side
        else:
            new_width, new_height = width, height

    if max(new_width, new_height) > max_long_side:
        scale_factor = max_long_side / max(new_width, new_height)
        new_width = int(new_width * scale_factor)
        new_height = int(new_height * scale_factor)
    return new_width, new_height

def resize_content(content_image):
    max_long_side = 1024
    min_short_side = 1024

    new_width, new_height = resize_width_height(content_image.size[0], content_image.size[1],
                                                min_short_side=min_short_side, max_long_side=max_long_side)
    height = new_height // 16 * 16
    width = new_width // 16 * 16
    content_image = content_image.resize((width, height))

    return width,height,content_image

attn_maps = {}
def hook_fn(name):
    def forward_hook(module, input, output):
        if hasattr(module.processor, "attn_map"):
            attn_maps[name] = module.processor.attn_map
            del module.processor.attn_map

    return forward_hook

def register_cross_attention_hook(unet):
    for name, module in unet.named_modules():
        if name.split('.')[-1].startswith('attn2'):
            module.register_forward_hook(hook_fn(name))

    return unet

def upscale(attn_map, target_size):
    attn_map = torch.mean(attn_map, dim=0)
    attn_map = attn_map.permute(1,0)
    temp_size = None

    for i in range(0,5):
        scale = 2 ** i
        if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
            temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
            break

    assert temp_size is not None, "temp_size cannot is None"

    attn_map = attn_map.view(attn_map.shape[0], *temp_size)

    attn_map = F.interpolate(
        attn_map.unsqueeze(0).to(dtype=torch.float32),
        size=target_size,
        mode='bilinear',
        align_corners=False
    )[0]

    attn_map = torch.softmax(attn_map, dim=0)
    return attn_map
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):

    idx = 0 if instance_or_negative else 1
    net_attn_maps = []

    for name, attn_map in attn_maps.items():
        attn_map = attn_map.cpu() if detach else attn_map
        attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
        attn_map = upscale(attn_map, image_size) 
        net_attn_maps.append(attn_map) 

    net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)

    return net_attn_maps

def attnmaps2images(net_attn_maps):

    #total_attn_scores = 0
    images = []

    for attn_map in net_attn_maps:
        attn_map = attn_map.cpu().numpy()
        #total_attn_scores += attn_map.mean().item()

        normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
        normalized_attn_map = normalized_attn_map.astype(np.uint8)
        #print("norm: ", normalized_attn_map.shape)
        image = Image.fromarray(normalized_attn_map)

        #image = fix_save_attn_map(attn_map)
        images.append(image)

    #print(total_attn_scores)
    return images
def is_torch2_available():
    return hasattr(F, "scaled_dot_product_attention")

def get_generator(seed, device):

    if seed is not None:
        if isinstance(seed, list):
            generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
        else:
            generator = torch.Generator(device).manual_seed(seed)
    else:
        generator = None

    return generator