|
import os |
|
from typing import List |
|
|
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.pipelines.controlnet import MultiControlNetModel |
|
from PIL import Image |
|
from safetensors import safe_open |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
from torchvision import transforms |
|
from .utils import is_torch2_available, get_generator |
|
|
|
|
|
|
|
|
|
|
|
if is_torch2_available(): |
|
from .attention_processor import ( |
|
AttnProcessor2_0 as AttnProcessor, |
|
) |
|
from .attention_processor import ( |
|
CNAttnProcessor2_0 as CNAttnProcessor, |
|
) |
|
from .attention_processor import ( |
|
IPAttnProcessor2_0 as IPAttnProcessor, |
|
) |
|
from .attention_processor import IP_CS_AttnProcessor2_0 as IP_CS_AttnProcessor |
|
else: |
|
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor |
|
from .resampler import Resampler |
|
|
|
from transformers import AutoImageProcessor, AutoModel |
|
|
|
|
|
class ImageProjModel(torch.nn.Module): |
|
"""Projection Model""" |
|
|
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): |
|
super().__init__() |
|
|
|
self.generator = None |
|
self.cross_attention_dim = cross_attention_dim |
|
self.clip_extra_context_tokens = clip_extra_context_tokens |
|
|
|
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds): |
|
embeds = image_embeds |
|
clip_extra_context_tokens = self.proj(embeds).reshape( |
|
-1, self.clip_extra_context_tokens, self.cross_attention_dim |
|
) |
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class MLPProjModel(torch.nn.Module): |
|
"""SD model with image prompt""" |
|
|
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): |
|
super().__init__() |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), |
|
torch.nn.LayerNorm(cross_attention_dim) |
|
) |
|
|
|
def forward(self, image_embeds): |
|
clip_extra_context_tokens = self.proj(image_embeds) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class IPAdapter: |
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, target_blocks=["block"]): |
|
self.device = device |
|
self.image_encoder_path = image_encoder_path |
|
self.ip_ckpt = ip_ckpt |
|
self.num_tokens = num_tokens |
|
self.target_blocks = target_blocks |
|
|
|
self.pipe = sd_pipe.to(self.device) |
|
self.set_ip_adapter() |
|
|
|
|
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( |
|
self.device, dtype=torch.float16 |
|
) |
|
self.clip_image_processor = CLIPImageProcessor() |
|
|
|
self.image_proj_model = self.init_proj() |
|
|
|
self.load_ip_adapter() |
|
|
|
def init_proj(self): |
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=self.num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor() |
|
else: |
|
selected = False |
|
for block_name in self.target_blocks: |
|
if block_name in name: |
|
selected = True |
|
break |
|
if selected: |
|
attn_procs[name] = IPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
else: |
|
attn_procs[name] = IPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.num_tokens, |
|
skip=True |
|
).to(self.device, dtype=torch.float16) |
|
unet.set_attn_processor(attn_procs) |
|
if hasattr(self.pipe, "controlnet"): |
|
if isinstance(self.pipe.controlnet, MultiControlNetModel): |
|
for controlnet in self.pipe.controlnet.nets: |
|
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
else: |
|
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
|
|
def load_ip_adapter(self): |
|
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu") |
|
self.image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) |
|
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
else: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) |
|
|
|
if content_prompt_embeds is not None: |
|
clip_image_embeds = clip_image_embeds - content_prompt_embeds |
|
|
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_scale(self, scale): |
|
for attn_processor in self.pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, IPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def generate( |
|
self, |
|
pil_image=None, |
|
clip_image_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=30, |
|
neg_content_emb=None, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
if pil_image is not None: |
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
else: |
|
num_prompts = clip_image_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_image, clip_image_embeds=clip_image_embeds, content_prompt_embeds=neg_content_emb |
|
) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = get_generator(seed, self.device) |
|
|
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapter_CS: |
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_content_tokens=4, |
|
num_style_tokens=4, |
|
target_content_blocks=["block"], target_style_blocks=["block"], content_image_encoder_path=None, |
|
controlnet_adapter=False, |
|
controlnet_target_content_blocks=None, |
|
controlnet_target_style_blocks=None, |
|
content_model_resampler=False, |
|
style_model_resampler=False, |
|
): |
|
self.device = device |
|
self.image_encoder_path = image_encoder_path |
|
self.ip_ckpt = ip_ckpt |
|
self.num_content_tokens = num_content_tokens |
|
self.num_style_tokens = num_style_tokens |
|
self.content_target_blocks = target_content_blocks |
|
self.style_target_blocks = target_style_blocks |
|
|
|
self.content_model_resampler = content_model_resampler |
|
self.style_model_resampler = style_model_resampler |
|
|
|
self.controlnet_adapter = controlnet_adapter |
|
self.controlnet_target_content_blocks = controlnet_target_content_blocks |
|
self.controlnet_target_style_blocks = controlnet_target_style_blocks |
|
|
|
self.pipe = sd_pipe.to(self.device) |
|
self.set_ip_adapter() |
|
self.content_image_encoder_path = content_image_encoder_path |
|
|
|
|
|
|
|
if content_image_encoder_path is not None: |
|
self.content_image_encoder = AutoModel.from_pretrained(content_image_encoder_path).to(self.device, |
|
dtype=torch.float16) |
|
self.content_image_processor = AutoImageProcessor.from_pretrained(content_image_encoder_path) |
|
else: |
|
self.content_image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( |
|
self.device, dtype=torch.float16 |
|
) |
|
self.content_image_processor = CLIPImageProcessor() |
|
|
|
|
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( |
|
self.device, dtype=torch.float16 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.clip_image_processor = CLIPImageProcessor() |
|
|
|
self.content_image_proj_model = self.init_proj(self.num_content_tokens, content_or_style_='content', |
|
model_resampler=self.content_model_resampler) |
|
self.style_image_proj_model = self.init_proj(self.num_style_tokens, content_or_style_='style', |
|
model_resampler=self.style_model_resampler) |
|
|
|
self.load_ip_adapter() |
|
|
|
def init_proj(self, num_tokens, content_or_style_='content', model_resampler=False): |
|
|
|
|
|
if content_or_style_ == 'content' and self.content_image_encoder_path is not None: |
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.content_image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor() |
|
else: |
|
|
|
selected = False |
|
for block_name in self.style_target_blocks: |
|
if block_name in name: |
|
selected = True |
|
|
|
attn_procs[name] = IP_CS_AttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
style_scale=1.0, |
|
style=True, |
|
num_content_tokens=self.num_content_tokens, |
|
num_style_tokens=self.num_style_tokens, |
|
) |
|
for block_name in self.content_target_blocks: |
|
if block_name in name: |
|
|
|
if selected is False: |
|
attn_procs[name] = IP_CS_AttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
content_scale=1.0, |
|
content=True, |
|
num_content_tokens=self.num_content_tokens, |
|
num_style_tokens=self.num_style_tokens, |
|
) |
|
else: |
|
attn_procs[name].set_content_ipa(content_scale=1.0) |
|
|
|
|
|
if selected is False: |
|
attn_procs[name] = IP_CS_AttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
num_content_tokens=self.num_content_tokens, |
|
num_style_tokens=self.num_style_tokens, |
|
skip=True, |
|
) |
|
|
|
attn_procs[name].to(self.device, dtype=torch.float16) |
|
unet.set_attn_processor(attn_procs) |
|
if hasattr(self.pipe, "controlnet"): |
|
if self.controlnet_adapter is False: |
|
if isinstance(self.pipe.controlnet, MultiControlNetModel): |
|
for controlnet in self.pipe.controlnet.nets: |
|
controlnet.set_attn_processor(CNAttnProcessor( |
|
num_tokens=self.num_content_tokens + self.num_style_tokens)) |
|
else: |
|
self.pipe.controlnet.set_attn_processor(CNAttnProcessor( |
|
num_tokens=self.num_content_tokens + self.num_style_tokens)) |
|
|
|
else: |
|
controlnet_attn_procs = {} |
|
controlnet_style_target_blocks = self.controlnet_target_style_blocks |
|
controlnet_content_target_blocks = self.controlnet_target_content_blocks |
|
for name in self.pipe.controlnet.attn_processors.keys(): |
|
|
|
cross_attention_dim = None if name.endswith( |
|
"attn1.processor") else self.pipe.controlnet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = self.pipe.controlnet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(self.pipe.controlnet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = self.pipe.controlnet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
|
|
controlnet_attn_procs[name] = AttnProcessor() |
|
|
|
else: |
|
|
|
selected = False |
|
for block_name in controlnet_style_target_blocks: |
|
if block_name in name: |
|
selected = True |
|
|
|
controlnet_attn_procs[name] = IP_CS_AttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
style_scale=1.0, |
|
style=True, |
|
num_content_tokens=self.num_content_tokens, |
|
num_style_tokens=self.num_style_tokens, |
|
) |
|
|
|
for block_name in controlnet_content_target_blocks: |
|
if block_name in name: |
|
if selected is False: |
|
controlnet_attn_procs[name] = IP_CS_AttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
content_scale=1.0, |
|
content=True, |
|
num_content_tokens=self.num_content_tokens, |
|
num_style_tokens=self.num_style_tokens, |
|
) |
|
|
|
selected = True |
|
elif selected is True: |
|
controlnet_attn_procs[name].set_content_ipa(content_scale=1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if selected is False: |
|
controlnet_attn_procs[name] = IP_CS_AttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
num_content_tokens=self.num_content_tokens, |
|
num_style_tokens=self.num_style_tokens, |
|
skip=True, |
|
) |
|
controlnet_attn_procs[name].to(self.device, dtype=torch.float16) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.pipe.controlnet.set_attn_processor(controlnet_attn_procs) |
|
|
|
def load_ip_adapter(self): |
|
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": |
|
state_dict = {"content_image_proj": {}, "style_image_proj": {}, "ip_adapter": {}} |
|
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("content_image_proj."): |
|
state_dict["content_image_proj"][key.replace("content_image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("style_image_proj."): |
|
state_dict["style_image_proj"][key.replace("style_image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu") |
|
self.content_image_proj_model.load_state_dict(state_dict["content_image_proj"]) |
|
self.style_image_proj_model.load_state_dict(state_dict["style_image_proj"]) |
|
|
|
if 'conv_in_unet_sd' in state_dict.keys(): |
|
self.pipe.unet.conv_in.load_state_dict(state_dict["conv_in_unet_sd"], strict=True) |
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) |
|
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) |
|
|
|
if self.controlnet_adapter is True: |
|
print('loading controlnet_adapter') |
|
self.pipe.controlnet.load_state_dict(state_dict["controlnet_adapter_modules"], strict=False) |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None, |
|
content_or_style_=''): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if content_or_style_ == 'content': |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
if self.content_image_proj_model is not None: |
|
clip_image = self.content_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.content_image_encoder( |
|
clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
else: |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
else: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) |
|
|
|
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
if content_or_style_ == 'style': |
|
if pil_image is not None: |
|
if self.use_CSD is not None: |
|
clip_image = self.style_preprocess(pil_image).unsqueeze(0).to(self.device, dtype=torch.float32) |
|
clip_image_embeds = self.style_image_encoder(clip_image) |
|
else: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
|
|
|
|
else: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) |
|
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_scale(self, content_scale, style_scale): |
|
for attn_processor in self.pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, IP_CS_AttnProcessor): |
|
if attn_processor.content is True: |
|
attn_processor.content_scale = content_scale |
|
|
|
if attn_processor.style is True: |
|
attn_processor.style_scale = style_scale |
|
|
|
if self.controlnet_adapter is not None: |
|
for attn_processor in self.pipe.controlnet.attn_processors.values(): |
|
|
|
if isinstance(attn_processor, IP_CS_AttnProcessor): |
|
if attn_processor.content is True: |
|
attn_processor.content_scale = content_scale |
|
|
|
|
|
if attn_processor.style is True: |
|
attn_processor.style_scale = style_scale |
|
|
|
def generate( |
|
self, |
|
pil_content_image=None, |
|
pil_style_image=None, |
|
clip_content_image_embeds=None, |
|
clip_style_image_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
content_scale=1.0, |
|
style_scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=30, |
|
neg_content_emb=None, |
|
**kwargs, |
|
): |
|
self.set_scale(content_scale, style_scale) |
|
|
|
if pil_content_image is not None: |
|
num_prompts = 1 if isinstance(pil_content_image, Image.Image) else len(pil_content_image) |
|
else: |
|
num_prompts = clip_content_image_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
content_image_prompt_embeds, uncond_content_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_content_image, clip_image_embeds=clip_content_image_embeds |
|
) |
|
style_image_prompt_embeds, uncond_style_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_style_image, clip_image_embeds=clip_style_image_embeds |
|
) |
|
|
|
bs_embed, seq_len, _ = content_image_prompt_embeds.shape |
|
content_image_prompt_embeds = content_image_prompt_embeds.repeat(1, num_samples, 1) |
|
content_image_prompt_embeds = content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, |
|
-1) |
|
|
|
bs_style_embed, seq_style_len, _ = content_image_prompt_embeds.shape |
|
style_image_prompt_embeds = style_image_prompt_embeds.repeat(1, num_samples, 1) |
|
style_image_prompt_embeds = style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, -1) |
|
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, |
|
-1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, content_image_prompt_embeds, style_image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, |
|
uncond_content_image_prompt_embeds, uncond_style_image_prompt_embeds], |
|
dim=1) |
|
|
|
generator = get_generator(seed, self.device) |
|
|
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapterXL_CS(IPAdapter_CS): |
|
"""SDXL""" |
|
|
|
def generate( |
|
self, |
|
pil_content_image, |
|
pil_style_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
content_scale=1.0, |
|
style_scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
content_image_embeds=None, |
|
style_image_embeds=None, |
|
num_inference_steps=30, |
|
neg_content_emb=None, |
|
neg_content_prompt=None, |
|
neg_content_scale=1.0, |
|
**kwargs, |
|
): |
|
self.set_scale(content_scale, style_scale) |
|
|
|
num_prompts = 1 if isinstance(pil_content_image, Image.Image) else len(pil_content_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
content_image_prompt_embeds, uncond_content_image_prompt_embeds = self.get_image_embeds(pil_content_image, |
|
content_image_embeds, |
|
content_or_style_='content') |
|
|
|
|
|
|
|
style_image_prompt_embeds, uncond_style_image_prompt_embeds = self.get_image_embeds(pil_style_image, |
|
style_image_embeds, |
|
content_or_style_='style') |
|
|
|
bs_embed, seq_len, _ = content_image_prompt_embeds.shape |
|
|
|
content_image_prompt_embeds = content_image_prompt_embeds.repeat(1, num_samples, 1) |
|
content_image_prompt_embeds = content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, |
|
-1) |
|
bs_style_embed, seq_style_len, _ = style_image_prompt_embeds.shape |
|
style_image_prompt_embeds = style_image_prompt_embeds.repeat(1, num_samples, 1) |
|
style_image_prompt_embeds = style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, -1) |
|
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, |
|
-1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, content_image_prompt_embeds, style_image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, |
|
uncond_content_image_prompt_embeds, uncond_style_image_prompt_embeds], |
|
dim=1) |
|
|
|
self.generator = get_generator(seed, self.device) |
|
|
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=self.generator, |
|
**kwargs, |
|
).images |
|
return images |
|
|
|
|
|
class CSGO(IPAdapterXL_CS): |
|
"""SDXL""" |
|
|
|
def init_proj(self, num_tokens, content_or_style_='content', model_resampler=False): |
|
if content_or_style_ == 'content': |
|
if model_resampler: |
|
image_proj_model = Resampler( |
|
dim=self.pipe.unet.config.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=num_tokens, |
|
embedding_dim=self.content_image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
else: |
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
if content_or_style_ == 'style': |
|
if model_resampler: |
|
image_proj_model = Resampler( |
|
dim=self.pipe.unet.config.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=num_tokens, |
|
embedding_dim=self.content_image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
else: |
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_or_style_=''): |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
if content_or_style_ == 'style': |
|
|
|
if self.style_model_resampler: |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16), |
|
output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
else: |
|
|
|
|
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
|
|
else: |
|
|
|
if self.content_image_encoder_path is not None: |
|
clip_image = self.content_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
outputs = self.content_image_encoder(clip_image.to(self.device, dtype=torch.float16), |
|
output_hidden_states=True) |
|
clip_image_embeds = outputs.last_hidden_state |
|
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds) |
|
|
|
|
|
|
|
|
|
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
else: |
|
if self.content_model_resampler: |
|
|
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
|
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
|
|
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds) |
|
|
|
|
|
|
|
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
else: |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
|
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class IPAdapterXL(IPAdapter): |
|
"""SDXL""" |
|
|
|
def generate( |
|
self, |
|
pil_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
neg_content_emb=None, |
|
neg_content_prompt=None, |
|
neg_content_scale=1.0, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
if neg_content_emb is None: |
|
if neg_content_prompt is not None: |
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds_, |
|
negative_prompt_embeds_, |
|
pooled_prompt_embeds_, |
|
negative_pooled_prompt_embeds_, |
|
) = self.pipe.encode_prompt( |
|
neg_content_prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
pooled_prompt_embeds_ *= neg_content_scale |
|
else: |
|
pooled_prompt_embeds_ = neg_content_emb |
|
else: |
|
pooled_prompt_embeds_ = None |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image, |
|
content_prompt_embeds=pooled_prompt_embeds_) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
|
|
self.generator = get_generator(seed, self.device) |
|
|
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=self.generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapterPlus(IPAdapter): |
|
"""IP-Adapter with fine-grained features""" |
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=self.pipe.unet.config.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
|
|
class IPAdapterFull(IPAdapterPlus): |
|
"""IP-Adapter with full features""" |
|
|
|
def init_proj(self): |
|
image_proj_model = MLPProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.hidden_size, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
|
|
class IPAdapterPlusXL(IPAdapter): |
|
"""SDXL""" |
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image): |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def generate( |
|
self, |
|
pil_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = get_generator(seed, self.device) |
|
|
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|