Delete ip_adapter
Browse files- ip_adapter/__init__.py +0 -10
- ip_adapter/attention_processor.py +0 -754
- ip_adapter/ip_adapter.py +0 -1078
- ip_adapter/ip_adapter___init__.py +0 -10
- ip_adapter/ip_adapter_attention_processor.py +0 -754
- ip_adapter/ip_adapter_ip_adapter.py +0 -1078
- ip_adapter/ip_adapter_resampler.py +0 -158
- ip_adapter/ip_adapter_utils.py +0 -142
- ip_adapter/resampler.py +0 -158
- ip_adapter/utils.py +0 -142
ip_adapter/__init__.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull,IPAdapterXL_CS,IPAdapter_CS
|
2 |
-
from .ip_adapter import CSGO
|
3 |
-
__all__ = [
|
4 |
-
"IPAdapter",
|
5 |
-
"IPAdapterPlus",
|
6 |
-
"IPAdapterPlusXL",
|
7 |
-
"IPAdapterXL",
|
8 |
-
"CSGO"
|
9 |
-
"IPAdapterFull",
|
10 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/attention_processor.py
DELETED
@@ -1,754 +0,0 @@
|
|
1 |
-
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
class AttnProcessor(nn.Module):
|
8 |
-
r"""
|
9 |
-
Default processor for performing attention-related computations.
|
10 |
-
"""
|
11 |
-
|
12 |
-
def __init__(
|
13 |
-
self,
|
14 |
-
hidden_size=None,
|
15 |
-
cross_attention_dim=None,
|
16 |
-
save_in_unet='down',
|
17 |
-
atten_control=None,
|
18 |
-
):
|
19 |
-
super().__init__()
|
20 |
-
self.atten_control = atten_control
|
21 |
-
self.save_in_unet = save_in_unet
|
22 |
-
|
23 |
-
def __call__(
|
24 |
-
self,
|
25 |
-
attn,
|
26 |
-
hidden_states,
|
27 |
-
encoder_hidden_states=None,
|
28 |
-
attention_mask=None,
|
29 |
-
temb=None,
|
30 |
-
):
|
31 |
-
residual = hidden_states
|
32 |
-
|
33 |
-
if attn.spatial_norm is not None:
|
34 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
35 |
-
|
36 |
-
input_ndim = hidden_states.ndim
|
37 |
-
|
38 |
-
if input_ndim == 4:
|
39 |
-
batch_size, channel, height, width = hidden_states.shape
|
40 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
41 |
-
|
42 |
-
batch_size, sequence_length, _ = (
|
43 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
44 |
-
)
|
45 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
46 |
-
|
47 |
-
if attn.group_norm is not None:
|
48 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
49 |
-
|
50 |
-
query = attn.to_q(hidden_states)
|
51 |
-
|
52 |
-
if encoder_hidden_states is None:
|
53 |
-
encoder_hidden_states = hidden_states
|
54 |
-
elif attn.norm_cross:
|
55 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
56 |
-
|
57 |
-
key = attn.to_k(encoder_hidden_states)
|
58 |
-
value = attn.to_v(encoder_hidden_states)
|
59 |
-
|
60 |
-
query = attn.head_to_batch_dim(query)
|
61 |
-
key = attn.head_to_batch_dim(key)
|
62 |
-
value = attn.head_to_batch_dim(value)
|
63 |
-
|
64 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
65 |
-
hidden_states = torch.bmm(attention_probs, value)
|
66 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
67 |
-
|
68 |
-
# linear proj
|
69 |
-
hidden_states = attn.to_out[0](hidden_states)
|
70 |
-
# dropout
|
71 |
-
hidden_states = attn.to_out[1](hidden_states)
|
72 |
-
|
73 |
-
if input_ndim == 4:
|
74 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
75 |
-
|
76 |
-
if attn.residual_connection:
|
77 |
-
hidden_states = hidden_states + residual
|
78 |
-
|
79 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
80 |
-
|
81 |
-
return hidden_states
|
82 |
-
|
83 |
-
|
84 |
-
class IPAttnProcessor(nn.Module):
|
85 |
-
r"""
|
86 |
-
Attention processor for IP-Adapater.
|
87 |
-
Args:
|
88 |
-
hidden_size (`int`):
|
89 |
-
The hidden size of the attention layer.
|
90 |
-
cross_attention_dim (`int`):
|
91 |
-
The number of channels in the `encoder_hidden_states`.
|
92 |
-
scale (`float`, defaults to 1.0):
|
93 |
-
the weight scale of image prompt.
|
94 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
95 |
-
The context length of the image features.
|
96 |
-
"""
|
97 |
-
|
98 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None):
|
99 |
-
super().__init__()
|
100 |
-
|
101 |
-
self.hidden_size = hidden_size
|
102 |
-
self.cross_attention_dim = cross_attention_dim
|
103 |
-
self.scale = scale
|
104 |
-
self.num_tokens = num_tokens
|
105 |
-
self.skip = skip
|
106 |
-
|
107 |
-
self.atten_control = atten_control
|
108 |
-
self.save_in_unet = save_in_unet
|
109 |
-
|
110 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
111 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
112 |
-
|
113 |
-
def __call__(
|
114 |
-
self,
|
115 |
-
attn,
|
116 |
-
hidden_states,
|
117 |
-
encoder_hidden_states=None,
|
118 |
-
attention_mask=None,
|
119 |
-
temb=None,
|
120 |
-
):
|
121 |
-
residual = hidden_states
|
122 |
-
|
123 |
-
if attn.spatial_norm is not None:
|
124 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
125 |
-
|
126 |
-
input_ndim = hidden_states.ndim
|
127 |
-
|
128 |
-
if input_ndim == 4:
|
129 |
-
batch_size, channel, height, width = hidden_states.shape
|
130 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
131 |
-
|
132 |
-
batch_size, sequence_length, _ = (
|
133 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
134 |
-
)
|
135 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
136 |
-
|
137 |
-
if attn.group_norm is not None:
|
138 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
139 |
-
|
140 |
-
query = attn.to_q(hidden_states)
|
141 |
-
|
142 |
-
if encoder_hidden_states is None:
|
143 |
-
encoder_hidden_states = hidden_states
|
144 |
-
else:
|
145 |
-
# get encoder_hidden_states, ip_hidden_states
|
146 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
147 |
-
encoder_hidden_states, ip_hidden_states = (
|
148 |
-
encoder_hidden_states[:, :end_pos, :],
|
149 |
-
encoder_hidden_states[:, end_pos:, :],
|
150 |
-
)
|
151 |
-
if attn.norm_cross:
|
152 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
153 |
-
|
154 |
-
key = attn.to_k(encoder_hidden_states)
|
155 |
-
value = attn.to_v(encoder_hidden_states)
|
156 |
-
|
157 |
-
query = attn.head_to_batch_dim(query)
|
158 |
-
key = attn.head_to_batch_dim(key)
|
159 |
-
value = attn.head_to_batch_dim(value)
|
160 |
-
|
161 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
162 |
-
hidden_states = torch.bmm(attention_probs, value)
|
163 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
164 |
-
|
165 |
-
if not self.skip:
|
166 |
-
# for ip-adapter
|
167 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
168 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
169 |
-
|
170 |
-
ip_key = attn.head_to_batch_dim(ip_key)
|
171 |
-
ip_value = attn.head_to_batch_dim(ip_value)
|
172 |
-
|
173 |
-
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
174 |
-
self.attn_map = ip_attention_probs
|
175 |
-
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
176 |
-
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
177 |
-
|
178 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
179 |
-
|
180 |
-
# linear proj
|
181 |
-
hidden_states = attn.to_out[0](hidden_states)
|
182 |
-
# dropout
|
183 |
-
hidden_states = attn.to_out[1](hidden_states)
|
184 |
-
|
185 |
-
if input_ndim == 4:
|
186 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
187 |
-
|
188 |
-
if attn.residual_connection:
|
189 |
-
hidden_states = hidden_states + residual
|
190 |
-
|
191 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
192 |
-
|
193 |
-
return hidden_states
|
194 |
-
|
195 |
-
|
196 |
-
class AttnProcessor2_0(torch.nn.Module):
|
197 |
-
r"""
|
198 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
199 |
-
"""
|
200 |
-
|
201 |
-
def __init__(
|
202 |
-
self,
|
203 |
-
hidden_size=None,
|
204 |
-
cross_attention_dim=None,
|
205 |
-
save_in_unet='down',
|
206 |
-
atten_control=None,
|
207 |
-
):
|
208 |
-
super().__init__()
|
209 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
210 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
211 |
-
self.atten_control = atten_control
|
212 |
-
self.save_in_unet = save_in_unet
|
213 |
-
|
214 |
-
def __call__(
|
215 |
-
self,
|
216 |
-
attn,
|
217 |
-
hidden_states,
|
218 |
-
encoder_hidden_states=None,
|
219 |
-
attention_mask=None,
|
220 |
-
temb=None,
|
221 |
-
):
|
222 |
-
residual = hidden_states
|
223 |
-
|
224 |
-
if attn.spatial_norm is not None:
|
225 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
226 |
-
|
227 |
-
input_ndim = hidden_states.ndim
|
228 |
-
|
229 |
-
if input_ndim == 4:
|
230 |
-
batch_size, channel, height, width = hidden_states.shape
|
231 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
232 |
-
|
233 |
-
batch_size, sequence_length, _ = (
|
234 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
235 |
-
)
|
236 |
-
|
237 |
-
if attention_mask is not None:
|
238 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
239 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
240 |
-
# (batch, heads, source_length, target_length)
|
241 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
242 |
-
|
243 |
-
if attn.group_norm is not None:
|
244 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
245 |
-
|
246 |
-
query = attn.to_q(hidden_states)
|
247 |
-
|
248 |
-
if encoder_hidden_states is None:
|
249 |
-
encoder_hidden_states = hidden_states
|
250 |
-
elif attn.norm_cross:
|
251 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
252 |
-
|
253 |
-
key = attn.to_k(encoder_hidden_states)
|
254 |
-
value = attn.to_v(encoder_hidden_states)
|
255 |
-
|
256 |
-
inner_dim = key.shape[-1]
|
257 |
-
head_dim = inner_dim // attn.heads
|
258 |
-
|
259 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
260 |
-
|
261 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
262 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
263 |
-
|
264 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
265 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
266 |
-
hidden_states = F.scaled_dot_product_attention(
|
267 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
268 |
-
)
|
269 |
-
|
270 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
271 |
-
hidden_states = hidden_states.to(query.dtype)
|
272 |
-
|
273 |
-
# linear proj
|
274 |
-
hidden_states = attn.to_out[0](hidden_states)
|
275 |
-
# dropout
|
276 |
-
hidden_states = attn.to_out[1](hidden_states)
|
277 |
-
|
278 |
-
if input_ndim == 4:
|
279 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
280 |
-
|
281 |
-
if attn.residual_connection:
|
282 |
-
hidden_states = hidden_states + residual
|
283 |
-
|
284 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
285 |
-
|
286 |
-
return hidden_states
|
287 |
-
|
288 |
-
|
289 |
-
class IPAttnProcessor2_0(torch.nn.Module):
|
290 |
-
r"""
|
291 |
-
Attention processor for IP-Adapater for PyTorch 2.0.
|
292 |
-
Args:
|
293 |
-
hidden_size (`int`):
|
294 |
-
The hidden size of the attention layer.
|
295 |
-
cross_attention_dim (`int`):
|
296 |
-
The number of channels in the `encoder_hidden_states`.
|
297 |
-
scale (`float`, defaults to 1.0):
|
298 |
-
the weight scale of image prompt.
|
299 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
300 |
-
The context length of the image features.
|
301 |
-
"""
|
302 |
-
|
303 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None):
|
304 |
-
super().__init__()
|
305 |
-
|
306 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
307 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
308 |
-
|
309 |
-
self.hidden_size = hidden_size
|
310 |
-
self.cross_attention_dim = cross_attention_dim
|
311 |
-
self.scale = scale
|
312 |
-
self.num_tokens = num_tokens
|
313 |
-
self.skip = skip
|
314 |
-
|
315 |
-
self.atten_control = atten_control
|
316 |
-
self.save_in_unet = save_in_unet
|
317 |
-
|
318 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
319 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
320 |
-
|
321 |
-
def __call__(
|
322 |
-
self,
|
323 |
-
attn,
|
324 |
-
hidden_states,
|
325 |
-
encoder_hidden_states=None,
|
326 |
-
attention_mask=None,
|
327 |
-
temb=None,
|
328 |
-
):
|
329 |
-
residual = hidden_states
|
330 |
-
|
331 |
-
if attn.spatial_norm is not None:
|
332 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
333 |
-
|
334 |
-
input_ndim = hidden_states.ndim
|
335 |
-
|
336 |
-
if input_ndim == 4:
|
337 |
-
batch_size, channel, height, width = hidden_states.shape
|
338 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
339 |
-
|
340 |
-
batch_size, sequence_length, _ = (
|
341 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
342 |
-
)
|
343 |
-
|
344 |
-
if attention_mask is not None:
|
345 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
346 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
347 |
-
# (batch, heads, source_length, target_length)
|
348 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
349 |
-
|
350 |
-
if attn.group_norm is not None:
|
351 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
352 |
-
|
353 |
-
query = attn.to_q(hidden_states)
|
354 |
-
|
355 |
-
if encoder_hidden_states is None:
|
356 |
-
encoder_hidden_states = hidden_states
|
357 |
-
else:
|
358 |
-
# get encoder_hidden_states, ip_hidden_states
|
359 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
360 |
-
encoder_hidden_states, ip_hidden_states = (
|
361 |
-
encoder_hidden_states[:, :end_pos, :],
|
362 |
-
encoder_hidden_states[:, end_pos:, :],
|
363 |
-
)
|
364 |
-
if attn.norm_cross:
|
365 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
366 |
-
|
367 |
-
key = attn.to_k(encoder_hidden_states)
|
368 |
-
value = attn.to_v(encoder_hidden_states)
|
369 |
-
|
370 |
-
inner_dim = key.shape[-1]
|
371 |
-
head_dim = inner_dim // attn.heads
|
372 |
-
|
373 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
374 |
-
|
375 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
376 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
377 |
-
|
378 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
379 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
380 |
-
hidden_states = F.scaled_dot_product_attention(
|
381 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
382 |
-
)
|
383 |
-
|
384 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
385 |
-
hidden_states = hidden_states.to(query.dtype)
|
386 |
-
|
387 |
-
if not self.skip:
|
388 |
-
# for ip-adapter
|
389 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
390 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
391 |
-
|
392 |
-
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
393 |
-
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
394 |
-
|
395 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
396 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
397 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
398 |
-
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
399 |
-
)
|
400 |
-
with torch.no_grad():
|
401 |
-
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
402 |
-
#print(self.attn_map.shape)
|
403 |
-
|
404 |
-
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
405 |
-
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
406 |
-
|
407 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
408 |
-
|
409 |
-
# linear proj
|
410 |
-
hidden_states = attn.to_out[0](hidden_states)
|
411 |
-
# dropout
|
412 |
-
hidden_states = attn.to_out[1](hidden_states)
|
413 |
-
|
414 |
-
if input_ndim == 4:
|
415 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
416 |
-
|
417 |
-
if attn.residual_connection:
|
418 |
-
hidden_states = hidden_states + residual
|
419 |
-
|
420 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
421 |
-
|
422 |
-
return hidden_states
|
423 |
-
|
424 |
-
|
425 |
-
class IP_CS_AttnProcessor2_0(torch.nn.Module):
|
426 |
-
r"""
|
427 |
-
Attention processor for IP-Adapater for PyTorch 2.0.
|
428 |
-
Args:
|
429 |
-
hidden_size (`int`):
|
430 |
-
The hidden size of the attention layer.
|
431 |
-
cross_attention_dim (`int`):
|
432 |
-
The number of channels in the `encoder_hidden_states`.
|
433 |
-
scale (`float`, defaults to 1.0):
|
434 |
-
the weight scale of image prompt.
|
435 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
436 |
-
The context length of the image features.
|
437 |
-
"""
|
438 |
-
|
439 |
-
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4,
|
440 |
-
skip=False,content=False, style=False):
|
441 |
-
super().__init__()
|
442 |
-
|
443 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
444 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
445 |
-
|
446 |
-
self.hidden_size = hidden_size
|
447 |
-
self.cross_attention_dim = cross_attention_dim
|
448 |
-
self.content_scale = content_scale
|
449 |
-
self.style_scale = style_scale
|
450 |
-
self.num_content_tokens = num_content_tokens
|
451 |
-
self.num_style_tokens = num_style_tokens
|
452 |
-
self.skip = skip
|
453 |
-
|
454 |
-
self.content = content
|
455 |
-
self.style = style
|
456 |
-
|
457 |
-
if self.content or self.style:
|
458 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
459 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
460 |
-
self.to_k_ip_content =None
|
461 |
-
self.to_v_ip_content =None
|
462 |
-
|
463 |
-
def set_content_ipa(self,content_scale=1.0):
|
464 |
-
|
465 |
-
self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
|
466 |
-
self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
|
467 |
-
self.content_scale=content_scale
|
468 |
-
self.content =True
|
469 |
-
|
470 |
-
def __call__(
|
471 |
-
self,
|
472 |
-
attn,
|
473 |
-
hidden_states,
|
474 |
-
encoder_hidden_states=None,
|
475 |
-
attention_mask=None,
|
476 |
-
temb=None,
|
477 |
-
):
|
478 |
-
residual = hidden_states
|
479 |
-
|
480 |
-
if attn.spatial_norm is not None:
|
481 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
482 |
-
|
483 |
-
input_ndim = hidden_states.ndim
|
484 |
-
|
485 |
-
if input_ndim == 4:
|
486 |
-
batch_size, channel, height, width = hidden_states.shape
|
487 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
488 |
-
|
489 |
-
batch_size, sequence_length, _ = (
|
490 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
491 |
-
)
|
492 |
-
|
493 |
-
if attention_mask is not None:
|
494 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
495 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
496 |
-
# (batch, heads, source_length, target_length)
|
497 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
498 |
-
|
499 |
-
if attn.group_norm is not None:
|
500 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
501 |
-
|
502 |
-
query = attn.to_q(hidden_states)
|
503 |
-
|
504 |
-
if encoder_hidden_states is None:
|
505 |
-
encoder_hidden_states = hidden_states
|
506 |
-
else:
|
507 |
-
# get encoder_hidden_states, ip_hidden_states
|
508 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens
|
509 |
-
encoder_hidden_states, ip_content_hidden_states,ip_style_hidden_states = (
|
510 |
-
encoder_hidden_states[:, :end_pos, :],
|
511 |
-
encoder_hidden_states[:, end_pos:end_pos + self.num_content_tokens, :],
|
512 |
-
encoder_hidden_states[:, end_pos + self.num_content_tokens:, :],
|
513 |
-
)
|
514 |
-
if attn.norm_cross:
|
515 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
516 |
-
|
517 |
-
key = attn.to_k(encoder_hidden_states)
|
518 |
-
value = attn.to_v(encoder_hidden_states)
|
519 |
-
|
520 |
-
inner_dim = key.shape[-1]
|
521 |
-
head_dim = inner_dim // attn.heads
|
522 |
-
|
523 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
524 |
-
|
525 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
526 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
527 |
-
|
528 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
529 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
530 |
-
hidden_states = F.scaled_dot_product_attention(
|
531 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
532 |
-
)
|
533 |
-
|
534 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
535 |
-
hidden_states = hidden_states.to(query.dtype)
|
536 |
-
|
537 |
-
if not self.skip and self.content is True:
|
538 |
-
# print('content#####################################################')
|
539 |
-
# for ip-content-adapter
|
540 |
-
if self.to_k_ip_content is None:
|
541 |
-
|
542 |
-
ip_content_key = self.to_k_ip(ip_content_hidden_states)
|
543 |
-
ip_content_value = self.to_v_ip(ip_content_hidden_states)
|
544 |
-
else:
|
545 |
-
ip_content_key = self.to_k_ip_content(ip_content_hidden_states)
|
546 |
-
ip_content_value = self.to_v_ip_content(ip_content_hidden_states)
|
547 |
-
|
548 |
-
ip_content_key = ip_content_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
549 |
-
ip_content_value = ip_content_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
550 |
-
|
551 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
552 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
553 |
-
ip_content_hidden_states = F.scaled_dot_product_attention(
|
554 |
-
query, ip_content_key, ip_content_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
555 |
-
)
|
556 |
-
|
557 |
-
|
558 |
-
ip_content_hidden_states = ip_content_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
559 |
-
ip_content_hidden_states = ip_content_hidden_states.to(query.dtype)
|
560 |
-
|
561 |
-
|
562 |
-
hidden_states = hidden_states + self.content_scale * ip_content_hidden_states
|
563 |
-
|
564 |
-
if not self.skip and self.style is True:
|
565 |
-
# for ip-style-adapter
|
566 |
-
ip_style_key = self.to_k_ip(ip_style_hidden_states)
|
567 |
-
ip_style_value = self.to_v_ip(ip_style_hidden_states)
|
568 |
-
|
569 |
-
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
570 |
-
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
571 |
-
|
572 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
573 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
574 |
-
ip_style_hidden_states = F.scaled_dot_product_attention(
|
575 |
-
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
576 |
-
)
|
577 |
-
|
578 |
-
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1,
|
579 |
-
attn.heads * head_dim)
|
580 |
-
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype)
|
581 |
-
|
582 |
-
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states
|
583 |
-
|
584 |
-
# linear proj
|
585 |
-
hidden_states = attn.to_out[0](hidden_states)
|
586 |
-
# dropout
|
587 |
-
hidden_states = attn.to_out[1](hidden_states)
|
588 |
-
|
589 |
-
if input_ndim == 4:
|
590 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
591 |
-
|
592 |
-
if attn.residual_connection:
|
593 |
-
hidden_states = hidden_states + residual
|
594 |
-
|
595 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
596 |
-
|
597 |
-
return hidden_states
|
598 |
-
|
599 |
-
## for controlnet
|
600 |
-
class CNAttnProcessor:
|
601 |
-
r"""
|
602 |
-
Default processor for performing attention-related computations.
|
603 |
-
"""
|
604 |
-
|
605 |
-
def __init__(self, num_tokens=4,save_in_unet='down',atten_control=None):
|
606 |
-
self.num_tokens = num_tokens
|
607 |
-
self.atten_control = atten_control
|
608 |
-
self.save_in_unet = save_in_unet
|
609 |
-
|
610 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
611 |
-
residual = hidden_states
|
612 |
-
|
613 |
-
if attn.spatial_norm is not None:
|
614 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
615 |
-
|
616 |
-
input_ndim = hidden_states.ndim
|
617 |
-
|
618 |
-
if input_ndim == 4:
|
619 |
-
batch_size, channel, height, width = hidden_states.shape
|
620 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
621 |
-
|
622 |
-
batch_size, sequence_length, _ = (
|
623 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
624 |
-
)
|
625 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
626 |
-
|
627 |
-
if attn.group_norm is not None:
|
628 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
629 |
-
|
630 |
-
query = attn.to_q(hidden_states)
|
631 |
-
|
632 |
-
if encoder_hidden_states is None:
|
633 |
-
encoder_hidden_states = hidden_states
|
634 |
-
else:
|
635 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
636 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
637 |
-
if attn.norm_cross:
|
638 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
639 |
-
|
640 |
-
key = attn.to_k(encoder_hidden_states)
|
641 |
-
value = attn.to_v(encoder_hidden_states)
|
642 |
-
|
643 |
-
query = attn.head_to_batch_dim(query)
|
644 |
-
key = attn.head_to_batch_dim(key)
|
645 |
-
value = attn.head_to_batch_dim(value)
|
646 |
-
|
647 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
648 |
-
hidden_states = torch.bmm(attention_probs, value)
|
649 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
650 |
-
|
651 |
-
# linear proj
|
652 |
-
hidden_states = attn.to_out[0](hidden_states)
|
653 |
-
# dropout
|
654 |
-
hidden_states = attn.to_out[1](hidden_states)
|
655 |
-
|
656 |
-
if input_ndim == 4:
|
657 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
658 |
-
|
659 |
-
if attn.residual_connection:
|
660 |
-
hidden_states = hidden_states + residual
|
661 |
-
|
662 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
663 |
-
|
664 |
-
return hidden_states
|
665 |
-
|
666 |
-
|
667 |
-
class CNAttnProcessor2_0:
|
668 |
-
r"""
|
669 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
670 |
-
"""
|
671 |
-
|
672 |
-
def __init__(self, num_tokens=4, save_in_unet='down', atten_control=None):
|
673 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
674 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
675 |
-
self.num_tokens = num_tokens
|
676 |
-
self.atten_control = atten_control
|
677 |
-
self.save_in_unet = save_in_unet
|
678 |
-
|
679 |
-
def __call__(
|
680 |
-
self,
|
681 |
-
attn,
|
682 |
-
hidden_states,
|
683 |
-
encoder_hidden_states=None,
|
684 |
-
attention_mask=None,
|
685 |
-
temb=None,
|
686 |
-
):
|
687 |
-
residual = hidden_states
|
688 |
-
|
689 |
-
if attn.spatial_norm is not None:
|
690 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
691 |
-
|
692 |
-
input_ndim = hidden_states.ndim
|
693 |
-
|
694 |
-
if input_ndim == 4:
|
695 |
-
batch_size, channel, height, width = hidden_states.shape
|
696 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
697 |
-
|
698 |
-
batch_size, sequence_length, _ = (
|
699 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
700 |
-
)
|
701 |
-
|
702 |
-
if attention_mask is not None:
|
703 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
704 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
705 |
-
# (batch, heads, source_length, target_length)
|
706 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
707 |
-
|
708 |
-
if attn.group_norm is not None:
|
709 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
710 |
-
|
711 |
-
query = attn.to_q(hidden_states)
|
712 |
-
|
713 |
-
if encoder_hidden_states is None:
|
714 |
-
encoder_hidden_states = hidden_states
|
715 |
-
else:
|
716 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
717 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
718 |
-
if attn.norm_cross:
|
719 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
720 |
-
|
721 |
-
key = attn.to_k(encoder_hidden_states)
|
722 |
-
value = attn.to_v(encoder_hidden_states)
|
723 |
-
|
724 |
-
inner_dim = key.shape[-1]
|
725 |
-
head_dim = inner_dim // attn.heads
|
726 |
-
|
727 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
728 |
-
|
729 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
730 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
731 |
-
|
732 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
733 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
734 |
-
hidden_states = F.scaled_dot_product_attention(
|
735 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
736 |
-
)
|
737 |
-
|
738 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
739 |
-
hidden_states = hidden_states.to(query.dtype)
|
740 |
-
|
741 |
-
# linear proj
|
742 |
-
hidden_states = attn.to_out[0](hidden_states)
|
743 |
-
# dropout
|
744 |
-
hidden_states = attn.to_out[1](hidden_states)
|
745 |
-
|
746 |
-
if input_ndim == 4:
|
747 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
748 |
-
|
749 |
-
if attn.residual_connection:
|
750 |
-
hidden_states = hidden_states + residual
|
751 |
-
|
752 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
753 |
-
|
754 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter.py
DELETED
@@ -1,1078 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from diffusers import StableDiffusionPipeline
|
6 |
-
from diffusers.pipelines.controlnet import MultiControlNetModel
|
7 |
-
from PIL import Image
|
8 |
-
from safetensors import safe_open
|
9 |
-
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
10 |
-
from torchvision import transforms
|
11 |
-
from .utils import is_torch2_available, get_generator
|
12 |
-
|
13 |
-
# import torchvision.transforms.functional as Func
|
14 |
-
|
15 |
-
# from .clip_style_models import CSD_CLIP, convert_state_dict
|
16 |
-
|
17 |
-
if is_torch2_available():
|
18 |
-
from .attention_processor import (
|
19 |
-
AttnProcessor2_0 as AttnProcessor,
|
20 |
-
)
|
21 |
-
from .attention_processor import (
|
22 |
-
CNAttnProcessor2_0 as CNAttnProcessor,
|
23 |
-
)
|
24 |
-
from .attention_processor import (
|
25 |
-
IPAttnProcessor2_0 as IPAttnProcessor,
|
26 |
-
)
|
27 |
-
from .attention_processor import IP_CS_AttnProcessor2_0 as IP_CS_AttnProcessor
|
28 |
-
else:
|
29 |
-
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
|
30 |
-
from .resampler import Resampler
|
31 |
-
|
32 |
-
from transformers import AutoImageProcessor, AutoModel
|
33 |
-
|
34 |
-
|
35 |
-
class ImageProjModel(torch.nn.Module):
|
36 |
-
"""Projection Model"""
|
37 |
-
|
38 |
-
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
39 |
-
super().__init__()
|
40 |
-
|
41 |
-
self.generator = None
|
42 |
-
self.cross_attention_dim = cross_attention_dim
|
43 |
-
self.clip_extra_context_tokens = clip_extra_context_tokens
|
44 |
-
# print(clip_embeddings_dim, self.clip_extra_context_tokens, cross_attention_dim)
|
45 |
-
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
46 |
-
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
47 |
-
|
48 |
-
def forward(self, image_embeds):
|
49 |
-
embeds = image_embeds
|
50 |
-
clip_extra_context_tokens = self.proj(embeds).reshape(
|
51 |
-
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
52 |
-
)
|
53 |
-
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
54 |
-
return clip_extra_context_tokens
|
55 |
-
|
56 |
-
|
57 |
-
class MLPProjModel(torch.nn.Module):
|
58 |
-
"""SD model with image prompt"""
|
59 |
-
|
60 |
-
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
61 |
-
super().__init__()
|
62 |
-
|
63 |
-
self.proj = torch.nn.Sequential(
|
64 |
-
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
65 |
-
torch.nn.GELU(),
|
66 |
-
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
67 |
-
torch.nn.LayerNorm(cross_attention_dim)
|
68 |
-
)
|
69 |
-
|
70 |
-
def forward(self, image_embeds):
|
71 |
-
clip_extra_context_tokens = self.proj(image_embeds)
|
72 |
-
return clip_extra_context_tokens
|
73 |
-
|
74 |
-
|
75 |
-
class IPAdapter:
|
76 |
-
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, target_blocks=["block"]):
|
77 |
-
self.device = device
|
78 |
-
self.image_encoder_path = image_encoder_path
|
79 |
-
self.ip_ckpt = ip_ckpt
|
80 |
-
self.num_tokens = num_tokens
|
81 |
-
self.target_blocks = target_blocks
|
82 |
-
|
83 |
-
self.pipe = sd_pipe.to(self.device)
|
84 |
-
self.set_ip_adapter()
|
85 |
-
|
86 |
-
# load image encoder
|
87 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
88 |
-
self.device, dtype=torch.float16
|
89 |
-
)
|
90 |
-
self.clip_image_processor = CLIPImageProcessor()
|
91 |
-
# image proj model
|
92 |
-
self.image_proj_model = self.init_proj()
|
93 |
-
|
94 |
-
self.load_ip_adapter()
|
95 |
-
|
96 |
-
def init_proj(self):
|
97 |
-
image_proj_model = ImageProjModel(
|
98 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
99 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
100 |
-
clip_extra_context_tokens=self.num_tokens,
|
101 |
-
).to(self.device, dtype=torch.float16)
|
102 |
-
return image_proj_model
|
103 |
-
|
104 |
-
def set_ip_adapter(self):
|
105 |
-
unet = self.pipe.unet
|
106 |
-
attn_procs = {}
|
107 |
-
for name in unet.attn_processors.keys():
|
108 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
109 |
-
if name.startswith("mid_block"):
|
110 |
-
hidden_size = unet.config.block_out_channels[-1]
|
111 |
-
elif name.startswith("up_blocks"):
|
112 |
-
block_id = int(name[len("up_blocks.")])
|
113 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
114 |
-
elif name.startswith("down_blocks"):
|
115 |
-
block_id = int(name[len("down_blocks.")])
|
116 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
117 |
-
if cross_attention_dim is None:
|
118 |
-
attn_procs[name] = AttnProcessor()
|
119 |
-
else:
|
120 |
-
selected = False
|
121 |
-
for block_name in self.target_blocks:
|
122 |
-
if block_name in name:
|
123 |
-
selected = True
|
124 |
-
break
|
125 |
-
if selected:
|
126 |
-
attn_procs[name] = IPAttnProcessor(
|
127 |
-
hidden_size=hidden_size,
|
128 |
-
cross_attention_dim=cross_attention_dim,
|
129 |
-
scale=1.0,
|
130 |
-
num_tokens=self.num_tokens,
|
131 |
-
).to(self.device, dtype=torch.float16)
|
132 |
-
else:
|
133 |
-
attn_procs[name] = IPAttnProcessor(
|
134 |
-
hidden_size=hidden_size,
|
135 |
-
cross_attention_dim=cross_attention_dim,
|
136 |
-
scale=1.0,
|
137 |
-
num_tokens=self.num_tokens,
|
138 |
-
skip=True
|
139 |
-
).to(self.device, dtype=torch.float16)
|
140 |
-
unet.set_attn_processor(attn_procs)
|
141 |
-
if hasattr(self.pipe, "controlnet"):
|
142 |
-
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
143 |
-
for controlnet in self.pipe.controlnet.nets:
|
144 |
-
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
145 |
-
else:
|
146 |
-
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
147 |
-
|
148 |
-
def load_ip_adapter(self):
|
149 |
-
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
150 |
-
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
151 |
-
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
152 |
-
for key in f.keys():
|
153 |
-
if key.startswith("image_proj."):
|
154 |
-
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
155 |
-
elif key.startswith("ip_adapter."):
|
156 |
-
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
157 |
-
else:
|
158 |
-
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
159 |
-
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
160 |
-
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
161 |
-
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
|
162 |
-
|
163 |
-
@torch.inference_mode()
|
164 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None):
|
165 |
-
if pil_image is not None:
|
166 |
-
if isinstance(pil_image, Image.Image):
|
167 |
-
pil_image = [pil_image]
|
168 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
169 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
170 |
-
else:
|
171 |
-
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
172 |
-
|
173 |
-
if content_prompt_embeds is not None:
|
174 |
-
clip_image_embeds = clip_image_embeds - content_prompt_embeds
|
175 |
-
|
176 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
177 |
-
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
178 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
179 |
-
|
180 |
-
def set_scale(self, scale):
|
181 |
-
for attn_processor in self.pipe.unet.attn_processors.values():
|
182 |
-
if isinstance(attn_processor, IPAttnProcessor):
|
183 |
-
attn_processor.scale = scale
|
184 |
-
|
185 |
-
def generate(
|
186 |
-
self,
|
187 |
-
pil_image=None,
|
188 |
-
clip_image_embeds=None,
|
189 |
-
prompt=None,
|
190 |
-
negative_prompt=None,
|
191 |
-
scale=1.0,
|
192 |
-
num_samples=4,
|
193 |
-
seed=None,
|
194 |
-
guidance_scale=7.5,
|
195 |
-
num_inference_steps=30,
|
196 |
-
neg_content_emb=None,
|
197 |
-
**kwargs,
|
198 |
-
):
|
199 |
-
self.set_scale(scale)
|
200 |
-
|
201 |
-
if pil_image is not None:
|
202 |
-
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
203 |
-
else:
|
204 |
-
num_prompts = clip_image_embeds.size(0)
|
205 |
-
|
206 |
-
if prompt is None:
|
207 |
-
prompt = "best quality, high quality"
|
208 |
-
if negative_prompt is None:
|
209 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
210 |
-
|
211 |
-
if not isinstance(prompt, List):
|
212 |
-
prompt = [prompt] * num_prompts
|
213 |
-
if not isinstance(negative_prompt, List):
|
214 |
-
negative_prompt = [negative_prompt] * num_prompts
|
215 |
-
|
216 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
217 |
-
pil_image=pil_image, clip_image_embeds=clip_image_embeds, content_prompt_embeds=neg_content_emb
|
218 |
-
)
|
219 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
220 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
221 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
222 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
223 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
224 |
-
|
225 |
-
with torch.inference_mode():
|
226 |
-
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
227 |
-
prompt,
|
228 |
-
device=self.device,
|
229 |
-
num_images_per_prompt=num_samples,
|
230 |
-
do_classifier_free_guidance=True,
|
231 |
-
negative_prompt=negative_prompt,
|
232 |
-
)
|
233 |
-
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
234 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
235 |
-
|
236 |
-
generator = get_generator(seed, self.device)
|
237 |
-
|
238 |
-
images = self.pipe(
|
239 |
-
prompt_embeds=prompt_embeds,
|
240 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
241 |
-
guidance_scale=guidance_scale,
|
242 |
-
num_inference_steps=num_inference_steps,
|
243 |
-
generator=generator,
|
244 |
-
**kwargs,
|
245 |
-
).images
|
246 |
-
|
247 |
-
return images
|
248 |
-
|
249 |
-
|
250 |
-
class IPAdapter_CS:
|
251 |
-
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_content_tokens=4,
|
252 |
-
num_style_tokens=4,
|
253 |
-
target_content_blocks=["block"], target_style_blocks=["block"], content_image_encoder_path=None,
|
254 |
-
controlnet_adapter=False,
|
255 |
-
controlnet_target_content_blocks=None,
|
256 |
-
controlnet_target_style_blocks=None,
|
257 |
-
content_model_resampler=False,
|
258 |
-
style_model_resampler=False,
|
259 |
-
):
|
260 |
-
self.device = device
|
261 |
-
self.image_encoder_path = image_encoder_path
|
262 |
-
self.ip_ckpt = ip_ckpt
|
263 |
-
self.num_content_tokens = num_content_tokens
|
264 |
-
self.num_style_tokens = num_style_tokens
|
265 |
-
self.content_target_blocks = target_content_blocks
|
266 |
-
self.style_target_blocks = target_style_blocks
|
267 |
-
|
268 |
-
self.content_model_resampler = content_model_resampler
|
269 |
-
self.style_model_resampler = style_model_resampler
|
270 |
-
|
271 |
-
self.controlnet_adapter = controlnet_adapter
|
272 |
-
self.controlnet_target_content_blocks = controlnet_target_content_blocks
|
273 |
-
self.controlnet_target_style_blocks = controlnet_target_style_blocks
|
274 |
-
|
275 |
-
self.pipe = sd_pipe.to(self.device)
|
276 |
-
self.set_ip_adapter()
|
277 |
-
self.content_image_encoder_path = content_image_encoder_path
|
278 |
-
|
279 |
-
|
280 |
-
# load image encoder
|
281 |
-
if content_image_encoder_path is not None:
|
282 |
-
self.content_image_encoder = AutoModel.from_pretrained(content_image_encoder_path).to(self.device,
|
283 |
-
dtype=torch.float16)
|
284 |
-
self.content_image_processor = AutoImageProcessor.from_pretrained(content_image_encoder_path)
|
285 |
-
else:
|
286 |
-
self.content_image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
287 |
-
self.device, dtype=torch.float16
|
288 |
-
)
|
289 |
-
self.content_image_processor = CLIPImageProcessor()
|
290 |
-
# model.requires_grad_(False)
|
291 |
-
|
292 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
293 |
-
self.device, dtype=torch.float16
|
294 |
-
)
|
295 |
-
# if self.use_CSD is not None:
|
296 |
-
# self.style_image_encoder = CSD_CLIP("vit_large", "default",self.use_CSD+"/ViT-L-14.pt")
|
297 |
-
# model_path = self.use_CSD+"/checkpoint.pth"
|
298 |
-
# checkpoint = torch.load(model_path, map_location="cpu")
|
299 |
-
# state_dict = convert_state_dict(checkpoint['model_state_dict'])
|
300 |
-
# self.style_image_encoder.load_state_dict(state_dict, strict=False)
|
301 |
-
#
|
302 |
-
# normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
303 |
-
# self.style_preprocess = transforms.Compose([
|
304 |
-
# transforms.Resize(size=224, interpolation=Func.InterpolationMode.BICUBIC),
|
305 |
-
# transforms.CenterCrop(224),
|
306 |
-
# transforms.ToTensor(),
|
307 |
-
# normalize,
|
308 |
-
# ])
|
309 |
-
|
310 |
-
self.clip_image_processor = CLIPImageProcessor()
|
311 |
-
# image proj model
|
312 |
-
self.content_image_proj_model = self.init_proj(self.num_content_tokens, content_or_style_='content',
|
313 |
-
model_resampler=self.content_model_resampler)
|
314 |
-
self.style_image_proj_model = self.init_proj(self.num_style_tokens, content_or_style_='style',
|
315 |
-
model_resampler=self.style_model_resampler)
|
316 |
-
|
317 |
-
self.load_ip_adapter()
|
318 |
-
|
319 |
-
def init_proj(self, num_tokens, content_or_style_='content', model_resampler=False):
|
320 |
-
|
321 |
-
# print('@@@@',self.pipe.unet.config.cross_attention_dim,self.image_encoder.config.projection_dim)
|
322 |
-
if content_or_style_ == 'content' and self.content_image_encoder_path is not None:
|
323 |
-
image_proj_model = ImageProjModel(
|
324 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
325 |
-
clip_embeddings_dim=self.content_image_encoder.config.projection_dim,
|
326 |
-
clip_extra_context_tokens=num_tokens,
|
327 |
-
).to(self.device, dtype=torch.float16)
|
328 |
-
return image_proj_model
|
329 |
-
|
330 |
-
image_proj_model = ImageProjModel(
|
331 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
332 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
333 |
-
clip_extra_context_tokens=num_tokens,
|
334 |
-
).to(self.device, dtype=torch.float16)
|
335 |
-
return image_proj_model
|
336 |
-
|
337 |
-
def set_ip_adapter(self):
|
338 |
-
unet = self.pipe.unet
|
339 |
-
attn_procs = {}
|
340 |
-
for name in unet.attn_processors.keys():
|
341 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
342 |
-
if name.startswith("mid_block"):
|
343 |
-
hidden_size = unet.config.block_out_channels[-1]
|
344 |
-
elif name.startswith("up_blocks"):
|
345 |
-
block_id = int(name[len("up_blocks.")])
|
346 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
347 |
-
elif name.startswith("down_blocks"):
|
348 |
-
block_id = int(name[len("down_blocks.")])
|
349 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
350 |
-
if cross_attention_dim is None:
|
351 |
-
attn_procs[name] = AttnProcessor()
|
352 |
-
else:
|
353 |
-
# layername_id += 1
|
354 |
-
selected = False
|
355 |
-
for block_name in self.style_target_blocks:
|
356 |
-
if block_name in name:
|
357 |
-
selected = True
|
358 |
-
# print(name)
|
359 |
-
attn_procs[name] = IP_CS_AttnProcessor(
|
360 |
-
hidden_size=hidden_size,
|
361 |
-
cross_attention_dim=cross_attention_dim,
|
362 |
-
style_scale=1.0,
|
363 |
-
style=True,
|
364 |
-
num_content_tokens=self.num_content_tokens,
|
365 |
-
num_style_tokens=self.num_style_tokens,
|
366 |
-
)
|
367 |
-
for block_name in self.content_target_blocks:
|
368 |
-
if block_name in name:
|
369 |
-
# selected = True
|
370 |
-
if selected is False:
|
371 |
-
attn_procs[name] = IP_CS_AttnProcessor(
|
372 |
-
hidden_size=hidden_size,
|
373 |
-
cross_attention_dim=cross_attention_dim,
|
374 |
-
content_scale=1.0,
|
375 |
-
content=True,
|
376 |
-
num_content_tokens=self.num_content_tokens,
|
377 |
-
num_style_tokens=self.num_style_tokens,
|
378 |
-
)
|
379 |
-
else:
|
380 |
-
attn_procs[name].set_content_ipa(content_scale=1.0)
|
381 |
-
# attn_procs[name].content=True
|
382 |
-
|
383 |
-
if selected is False:
|
384 |
-
attn_procs[name] = IP_CS_AttnProcessor(
|
385 |
-
hidden_size=hidden_size,
|
386 |
-
cross_attention_dim=cross_attention_dim,
|
387 |
-
num_content_tokens=self.num_content_tokens,
|
388 |
-
num_style_tokens=self.num_style_tokens,
|
389 |
-
skip=True,
|
390 |
-
)
|
391 |
-
|
392 |
-
attn_procs[name].to(self.device, dtype=torch.float16)
|
393 |
-
unet.set_attn_processor(attn_procs)
|
394 |
-
if hasattr(self.pipe, "controlnet"):
|
395 |
-
if self.controlnet_adapter is False:
|
396 |
-
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
397 |
-
for controlnet in self.pipe.controlnet.nets:
|
398 |
-
controlnet.set_attn_processor(CNAttnProcessor(
|
399 |
-
num_tokens=self.num_content_tokens + self.num_style_tokens))
|
400 |
-
else:
|
401 |
-
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(
|
402 |
-
num_tokens=self.num_content_tokens + self.num_style_tokens))
|
403 |
-
|
404 |
-
else:
|
405 |
-
controlnet_attn_procs = {}
|
406 |
-
controlnet_style_target_blocks = self.controlnet_target_style_blocks
|
407 |
-
controlnet_content_target_blocks = self.controlnet_target_content_blocks
|
408 |
-
for name in self.pipe.controlnet.attn_processors.keys():
|
409 |
-
# print(name)
|
410 |
-
cross_attention_dim = None if name.endswith(
|
411 |
-
"attn1.processor") else self.pipe.controlnet.config.cross_attention_dim
|
412 |
-
if name.startswith("mid_block"):
|
413 |
-
hidden_size = self.pipe.controlnet.config.block_out_channels[-1]
|
414 |
-
elif name.startswith("up_blocks"):
|
415 |
-
block_id = int(name[len("up_blocks.")])
|
416 |
-
hidden_size = list(reversed(self.pipe.controlnet.config.block_out_channels))[block_id]
|
417 |
-
elif name.startswith("down_blocks"):
|
418 |
-
block_id = int(name[len("down_blocks.")])
|
419 |
-
hidden_size = self.pipe.controlnet.config.block_out_channels[block_id]
|
420 |
-
if cross_attention_dim is None:
|
421 |
-
# layername_id += 1
|
422 |
-
controlnet_attn_procs[name] = AttnProcessor()
|
423 |
-
|
424 |
-
else:
|
425 |
-
# layername_id += 1
|
426 |
-
selected = False
|
427 |
-
for block_name in controlnet_style_target_blocks:
|
428 |
-
if block_name in name:
|
429 |
-
selected = True
|
430 |
-
# print(name)
|
431 |
-
controlnet_attn_procs[name] = IP_CS_AttnProcessor(
|
432 |
-
hidden_size=hidden_size,
|
433 |
-
cross_attention_dim=cross_attention_dim,
|
434 |
-
style_scale=1.0,
|
435 |
-
style=True,
|
436 |
-
num_content_tokens=self.num_content_tokens,
|
437 |
-
num_style_tokens=self.num_style_tokens,
|
438 |
-
)
|
439 |
-
|
440 |
-
for block_name in controlnet_content_target_blocks:
|
441 |
-
if block_name in name:
|
442 |
-
if selected is False:
|
443 |
-
controlnet_attn_procs[name] = IP_CS_AttnProcessor(
|
444 |
-
hidden_size=hidden_size,
|
445 |
-
cross_attention_dim=cross_attention_dim,
|
446 |
-
content_scale=1.0,
|
447 |
-
content=True,
|
448 |
-
num_content_tokens=self.num_content_tokens,
|
449 |
-
num_style_tokens=self.num_style_tokens,
|
450 |
-
)
|
451 |
-
|
452 |
-
selected = True
|
453 |
-
elif selected is True:
|
454 |
-
controlnet_attn_procs[name].set_content_ipa(content_scale=1.0)
|
455 |
-
|
456 |
-
# if args.content_image_encoder_type !='dinov2':
|
457 |
-
# weights = {
|
458 |
-
# "to_k_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_k_ip.weight"],
|
459 |
-
# "to_v_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_v_ip.weight"],
|
460 |
-
# }
|
461 |
-
# attn_procs[name].load_state_dict(weights)
|
462 |
-
if selected is False:
|
463 |
-
controlnet_attn_procs[name] = IP_CS_AttnProcessor(
|
464 |
-
hidden_size=hidden_size,
|
465 |
-
cross_attention_dim=cross_attention_dim,
|
466 |
-
num_content_tokens=self.num_content_tokens,
|
467 |
-
num_style_tokens=self.num_style_tokens,
|
468 |
-
skip=True,
|
469 |
-
)
|
470 |
-
controlnet_attn_procs[name].to(self.device, dtype=torch.float16)
|
471 |
-
# layer_name = name.split(".processor")[0]
|
472 |
-
# # print(state_dict["ip_adapter"].keys())
|
473 |
-
# weights = {
|
474 |
-
# "to_k_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_k_ip.weight"],
|
475 |
-
# "to_v_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_v_ip.weight"],
|
476 |
-
# }
|
477 |
-
# attn_procs[name].load_state_dict(weights)
|
478 |
-
self.pipe.controlnet.set_attn_processor(controlnet_attn_procs)
|
479 |
-
|
480 |
-
def load_ip_adapter(self):
|
481 |
-
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
482 |
-
state_dict = {"content_image_proj": {}, "style_image_proj": {}, "ip_adapter": {}}
|
483 |
-
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
484 |
-
for key in f.keys():
|
485 |
-
if key.startswith("content_image_proj."):
|
486 |
-
state_dict["content_image_proj"][key.replace("content_image_proj.", "")] = f.get_tensor(key)
|
487 |
-
elif key.startswith("style_image_proj."):
|
488 |
-
state_dict["style_image_proj"][key.replace("style_image_proj.", "")] = f.get_tensor(key)
|
489 |
-
elif key.startswith("ip_adapter."):
|
490 |
-
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
491 |
-
else:
|
492 |
-
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
493 |
-
self.content_image_proj_model.load_state_dict(state_dict["content_image_proj"])
|
494 |
-
self.style_image_proj_model.load_state_dict(state_dict["style_image_proj"])
|
495 |
-
|
496 |
-
if 'conv_in_unet_sd' in state_dict.keys():
|
497 |
-
self.pipe.unet.conv_in.load_state_dict(state_dict["conv_in_unet_sd"], strict=True)
|
498 |
-
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
499 |
-
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
|
500 |
-
|
501 |
-
if self.controlnet_adapter is True:
|
502 |
-
print('loading controlnet_adapter')
|
503 |
-
self.pipe.controlnet.load_state_dict(state_dict["controlnet_adapter_modules"], strict=False)
|
504 |
-
|
505 |
-
@torch.inference_mode()
|
506 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None,
|
507 |
-
content_or_style_=''):
|
508 |
-
# if pil_image is not None:
|
509 |
-
# if isinstance(pil_image, Image.Image):
|
510 |
-
# pil_image = [pil_image]
|
511 |
-
# clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
512 |
-
# clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
513 |
-
# else:
|
514 |
-
# clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
515 |
-
|
516 |
-
# if content_prompt_embeds is not None:
|
517 |
-
# clip_image_embeds = clip_image_embeds - content_prompt_embeds
|
518 |
-
|
519 |
-
if content_or_style_ == 'content':
|
520 |
-
if pil_image is not None:
|
521 |
-
if isinstance(pil_image, Image.Image):
|
522 |
-
pil_image = [pil_image]
|
523 |
-
if self.content_image_proj_model is not None:
|
524 |
-
clip_image = self.content_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
525 |
-
clip_image_embeds = self.content_image_encoder(
|
526 |
-
clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
527 |
-
else:
|
528 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
529 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
530 |
-
else:
|
531 |
-
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
532 |
-
|
533 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
534 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
535 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
536 |
-
if content_or_style_ == 'style':
|
537 |
-
if pil_image is not None:
|
538 |
-
if self.use_CSD is not None:
|
539 |
-
clip_image = self.style_preprocess(pil_image).unsqueeze(0).to(self.device, dtype=torch.float32)
|
540 |
-
clip_image_embeds = self.style_image_encoder(clip_image)
|
541 |
-
else:
|
542 |
-
if isinstance(pil_image, Image.Image):
|
543 |
-
pil_image = [pil_image]
|
544 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
545 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
546 |
-
|
547 |
-
|
548 |
-
else:
|
549 |
-
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
550 |
-
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds)
|
551 |
-
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds))
|
552 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
553 |
-
|
554 |
-
def set_scale(self, content_scale, style_scale):
|
555 |
-
for attn_processor in self.pipe.unet.attn_processors.values():
|
556 |
-
if isinstance(attn_processor, IP_CS_AttnProcessor):
|
557 |
-
if attn_processor.content is True:
|
558 |
-
attn_processor.content_scale = content_scale
|
559 |
-
|
560 |
-
if attn_processor.style is True:
|
561 |
-
attn_processor.style_scale = style_scale
|
562 |
-
# print('style_scale:',style_scale)
|
563 |
-
if self.controlnet_adapter is not None:
|
564 |
-
for attn_processor in self.pipe.controlnet.attn_processors.values():
|
565 |
-
|
566 |
-
if isinstance(attn_processor, IP_CS_AttnProcessor):
|
567 |
-
if attn_processor.content is True:
|
568 |
-
attn_processor.content_scale = content_scale
|
569 |
-
# print(content_scale)
|
570 |
-
|
571 |
-
if attn_processor.style is True:
|
572 |
-
attn_processor.style_scale = style_scale
|
573 |
-
|
574 |
-
def generate(
|
575 |
-
self,
|
576 |
-
pil_content_image=None,
|
577 |
-
pil_style_image=None,
|
578 |
-
clip_content_image_embeds=None,
|
579 |
-
clip_style_image_embeds=None,
|
580 |
-
prompt=None,
|
581 |
-
negative_prompt=None,
|
582 |
-
content_scale=1.0,
|
583 |
-
style_scale=1.0,
|
584 |
-
num_samples=4,
|
585 |
-
seed=None,
|
586 |
-
guidance_scale=7.5,
|
587 |
-
num_inference_steps=30,
|
588 |
-
neg_content_emb=None,
|
589 |
-
**kwargs,
|
590 |
-
):
|
591 |
-
self.set_scale(content_scale, style_scale)
|
592 |
-
|
593 |
-
if pil_content_image is not None:
|
594 |
-
num_prompts = 1 if isinstance(pil_content_image, Image.Image) else len(pil_content_image)
|
595 |
-
else:
|
596 |
-
num_prompts = clip_content_image_embeds.size(0)
|
597 |
-
|
598 |
-
if prompt is None:
|
599 |
-
prompt = "best quality, high quality"
|
600 |
-
if negative_prompt is None:
|
601 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
602 |
-
|
603 |
-
if not isinstance(prompt, List):
|
604 |
-
prompt = [prompt] * num_prompts
|
605 |
-
if not isinstance(negative_prompt, List):
|
606 |
-
negative_prompt = [negative_prompt] * num_prompts
|
607 |
-
|
608 |
-
content_image_prompt_embeds, uncond_content_image_prompt_embeds = self.get_image_embeds(
|
609 |
-
pil_image=pil_content_image, clip_image_embeds=clip_content_image_embeds
|
610 |
-
)
|
611 |
-
style_image_prompt_embeds, uncond_style_image_prompt_embeds = self.get_image_embeds(
|
612 |
-
pil_image=pil_style_image, clip_image_embeds=clip_style_image_embeds
|
613 |
-
)
|
614 |
-
|
615 |
-
bs_embed, seq_len, _ = content_image_prompt_embeds.shape
|
616 |
-
content_image_prompt_embeds = content_image_prompt_embeds.repeat(1, num_samples, 1)
|
617 |
-
content_image_prompt_embeds = content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
618 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.repeat(1, num_samples, 1)
|
619 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.view(bs_embed * num_samples, seq_len,
|
620 |
-
-1)
|
621 |
-
|
622 |
-
bs_style_embed, seq_style_len, _ = content_image_prompt_embeds.shape
|
623 |
-
style_image_prompt_embeds = style_image_prompt_embeds.repeat(1, num_samples, 1)
|
624 |
-
style_image_prompt_embeds = style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, -1)
|
625 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.repeat(1, num_samples, 1)
|
626 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len,
|
627 |
-
-1)
|
628 |
-
|
629 |
-
with torch.inference_mode():
|
630 |
-
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
631 |
-
prompt,
|
632 |
-
device=self.device,
|
633 |
-
num_images_per_prompt=num_samples,
|
634 |
-
do_classifier_free_guidance=True,
|
635 |
-
negative_prompt=negative_prompt,
|
636 |
-
)
|
637 |
-
prompt_embeds = torch.cat([prompt_embeds_, content_image_prompt_embeds, style_image_prompt_embeds], dim=1)
|
638 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds_,
|
639 |
-
uncond_content_image_prompt_embeds, uncond_style_image_prompt_embeds],
|
640 |
-
dim=1)
|
641 |
-
|
642 |
-
generator = get_generator(seed, self.device)
|
643 |
-
|
644 |
-
images = self.pipe(
|
645 |
-
prompt_embeds=prompt_embeds,
|
646 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
647 |
-
guidance_scale=guidance_scale,
|
648 |
-
num_inference_steps=num_inference_steps,
|
649 |
-
generator=generator,
|
650 |
-
**kwargs,
|
651 |
-
).images
|
652 |
-
|
653 |
-
return images
|
654 |
-
|
655 |
-
|
656 |
-
class IPAdapterXL_CS(IPAdapter_CS):
|
657 |
-
"""SDXL"""
|
658 |
-
|
659 |
-
def generate(
|
660 |
-
self,
|
661 |
-
pil_content_image,
|
662 |
-
pil_style_image,
|
663 |
-
prompt=None,
|
664 |
-
negative_prompt=None,
|
665 |
-
content_scale=1.0,
|
666 |
-
style_scale=1.0,
|
667 |
-
num_samples=4,
|
668 |
-
seed=None,
|
669 |
-
content_image_embeds=None,
|
670 |
-
style_image_embeds=None,
|
671 |
-
num_inference_steps=30,
|
672 |
-
neg_content_emb=None,
|
673 |
-
neg_content_prompt=None,
|
674 |
-
neg_content_scale=1.0,
|
675 |
-
**kwargs,
|
676 |
-
):
|
677 |
-
self.set_scale(content_scale, style_scale)
|
678 |
-
|
679 |
-
num_prompts = 1 if isinstance(pil_content_image, Image.Image) else len(pil_content_image)
|
680 |
-
|
681 |
-
if prompt is None:
|
682 |
-
prompt = "best quality, high quality"
|
683 |
-
if negative_prompt is None:
|
684 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
685 |
-
|
686 |
-
if not isinstance(prompt, List):
|
687 |
-
prompt = [prompt] * num_prompts
|
688 |
-
if not isinstance(negative_prompt, List):
|
689 |
-
negative_prompt = [negative_prompt] * num_prompts
|
690 |
-
|
691 |
-
content_image_prompt_embeds, uncond_content_image_prompt_embeds = self.get_image_embeds(pil_content_image,
|
692 |
-
content_image_embeds,
|
693 |
-
content_or_style_='content')
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
style_image_prompt_embeds, uncond_style_image_prompt_embeds = self.get_image_embeds(pil_style_image,
|
698 |
-
style_image_embeds,
|
699 |
-
content_or_style_='style')
|
700 |
-
|
701 |
-
bs_embed, seq_len, _ = content_image_prompt_embeds.shape
|
702 |
-
|
703 |
-
content_image_prompt_embeds = content_image_prompt_embeds.repeat(1, num_samples, 1)
|
704 |
-
content_image_prompt_embeds = content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
705 |
-
|
706 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.repeat(1, num_samples, 1)
|
707 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.view(bs_embed * num_samples, seq_len,
|
708 |
-
-1)
|
709 |
-
bs_style_embed, seq_style_len, _ = style_image_prompt_embeds.shape
|
710 |
-
style_image_prompt_embeds = style_image_prompt_embeds.repeat(1, num_samples, 1)
|
711 |
-
style_image_prompt_embeds = style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, -1)
|
712 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.repeat(1, num_samples, 1)
|
713 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len,
|
714 |
-
-1)
|
715 |
-
|
716 |
-
with torch.inference_mode():
|
717 |
-
(
|
718 |
-
prompt_embeds,
|
719 |
-
negative_prompt_embeds,
|
720 |
-
pooled_prompt_embeds,
|
721 |
-
negative_pooled_prompt_embeds,
|
722 |
-
) = self.pipe.encode_prompt(
|
723 |
-
prompt,
|
724 |
-
num_images_per_prompt=num_samples,
|
725 |
-
do_classifier_free_guidance=True,
|
726 |
-
negative_prompt=negative_prompt,
|
727 |
-
)
|
728 |
-
prompt_embeds = torch.cat([prompt_embeds, content_image_prompt_embeds, style_image_prompt_embeds], dim=1)
|
729 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds,
|
730 |
-
uncond_content_image_prompt_embeds, uncond_style_image_prompt_embeds],
|
731 |
-
dim=1)
|
732 |
-
|
733 |
-
self.generator = get_generator(seed, self.device)
|
734 |
-
|
735 |
-
images = self.pipe(
|
736 |
-
prompt_embeds=prompt_embeds,
|
737 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
738 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
739 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
740 |
-
num_inference_steps=num_inference_steps,
|
741 |
-
generator=self.generator,
|
742 |
-
**kwargs,
|
743 |
-
).images
|
744 |
-
return images
|
745 |
-
|
746 |
-
|
747 |
-
class CSGO(IPAdapterXL_CS):
|
748 |
-
"""SDXL"""
|
749 |
-
|
750 |
-
def init_proj(self, num_tokens, content_or_style_='content', model_resampler=False):
|
751 |
-
if content_or_style_ == 'content':
|
752 |
-
if model_resampler:
|
753 |
-
image_proj_model = Resampler(
|
754 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
755 |
-
depth=4,
|
756 |
-
dim_head=64,
|
757 |
-
heads=12,
|
758 |
-
num_queries=num_tokens,
|
759 |
-
embedding_dim=self.content_image_encoder.config.hidden_size,
|
760 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
761 |
-
ff_mult=4,
|
762 |
-
).to(self.device, dtype=torch.float16)
|
763 |
-
else:
|
764 |
-
image_proj_model = ImageProjModel(
|
765 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
766 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
767 |
-
clip_extra_context_tokens=num_tokens,
|
768 |
-
).to(self.device, dtype=torch.float16)
|
769 |
-
if content_or_style_ == 'style':
|
770 |
-
if model_resampler:
|
771 |
-
image_proj_model = Resampler(
|
772 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
773 |
-
depth=4,
|
774 |
-
dim_head=64,
|
775 |
-
heads=12,
|
776 |
-
num_queries=num_tokens,
|
777 |
-
embedding_dim=self.content_image_encoder.config.hidden_size,
|
778 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
779 |
-
ff_mult=4,
|
780 |
-
).to(self.device, dtype=torch.float16)
|
781 |
-
else:
|
782 |
-
image_proj_model = ImageProjModel(
|
783 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
784 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
785 |
-
clip_extra_context_tokens=num_tokens,
|
786 |
-
).to(self.device, dtype=torch.float16)
|
787 |
-
return image_proj_model
|
788 |
-
|
789 |
-
@torch.inference_mode()
|
790 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_or_style_=''):
|
791 |
-
if isinstance(pil_image, Image.Image):
|
792 |
-
pil_image = [pil_image]
|
793 |
-
if content_or_style_ == 'style':
|
794 |
-
|
795 |
-
if self.style_model_resampler:
|
796 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
797 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16),
|
798 |
-
output_hidden_states=True).hidden_states[-2]
|
799 |
-
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds)
|
800 |
-
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds))
|
801 |
-
else:
|
802 |
-
|
803 |
-
|
804 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
805 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
806 |
-
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds)
|
807 |
-
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds))
|
808 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
809 |
-
|
810 |
-
|
811 |
-
else:
|
812 |
-
|
813 |
-
if self.content_image_encoder_path is not None:
|
814 |
-
clip_image = self.content_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
815 |
-
outputs = self.content_image_encoder(clip_image.to(self.device, dtype=torch.float16),
|
816 |
-
output_hidden_states=True)
|
817 |
-
clip_image_embeds = outputs.last_hidden_state
|
818 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
819 |
-
|
820 |
-
# uncond_clip_image_embeds = self.image_encoder(
|
821 |
-
# torch.zeros_like(clip_image), output_hidden_states=True
|
822 |
-
# ).last_hidden_state
|
823 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
824 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
825 |
-
|
826 |
-
else:
|
827 |
-
if self.content_model_resampler:
|
828 |
-
|
829 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
830 |
-
|
831 |
-
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
832 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
833 |
-
# clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
834 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
835 |
-
# uncond_clip_image_embeds = self.image_encoder(
|
836 |
-
# torch.zeros_like(clip_image), output_hidden_states=True
|
837 |
-
# ).hidden_states[-2]
|
838 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
839 |
-
else:
|
840 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
841 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
842 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
843 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
844 |
-
|
845 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
846 |
-
|
847 |
-
# # clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
848 |
-
# clip_image = clip_image.to(self.device, dtype=torch.float16)
|
849 |
-
# clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
850 |
-
# image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
851 |
-
# uncond_clip_image_embeds = self.image_encoder(
|
852 |
-
# torch.zeros_like(clip_image), output_hidden_states=True
|
853 |
-
# ).hidden_states[-2]
|
854 |
-
# uncond_image_prompt_embeds = self.content_image_proj_model(uncond_clip_image_embeds)
|
855 |
-
# return image_prompt_embeds, uncond_image_prompt_embeds
|
856 |
-
|
857 |
-
|
858 |
-
class IPAdapterXL(IPAdapter):
|
859 |
-
"""SDXL"""
|
860 |
-
|
861 |
-
def generate(
|
862 |
-
self,
|
863 |
-
pil_image,
|
864 |
-
prompt=None,
|
865 |
-
negative_prompt=None,
|
866 |
-
scale=1.0,
|
867 |
-
num_samples=4,
|
868 |
-
seed=None,
|
869 |
-
num_inference_steps=30,
|
870 |
-
neg_content_emb=None,
|
871 |
-
neg_content_prompt=None,
|
872 |
-
neg_content_scale=1.0,
|
873 |
-
**kwargs,
|
874 |
-
):
|
875 |
-
self.set_scale(scale)
|
876 |
-
|
877 |
-
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
878 |
-
|
879 |
-
if prompt is None:
|
880 |
-
prompt = "best quality, high quality"
|
881 |
-
if negative_prompt is None:
|
882 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
883 |
-
|
884 |
-
if not isinstance(prompt, List):
|
885 |
-
prompt = [prompt] * num_prompts
|
886 |
-
if not isinstance(negative_prompt, List):
|
887 |
-
negative_prompt = [negative_prompt] * num_prompts
|
888 |
-
|
889 |
-
if neg_content_emb is None:
|
890 |
-
if neg_content_prompt is not None:
|
891 |
-
with torch.inference_mode():
|
892 |
-
(
|
893 |
-
prompt_embeds_, # torch.Size([1, 77, 2048])
|
894 |
-
negative_prompt_embeds_,
|
895 |
-
pooled_prompt_embeds_, # torch.Size([1, 1280])
|
896 |
-
negative_pooled_prompt_embeds_,
|
897 |
-
) = self.pipe.encode_prompt(
|
898 |
-
neg_content_prompt,
|
899 |
-
num_images_per_prompt=num_samples,
|
900 |
-
do_classifier_free_guidance=True,
|
901 |
-
negative_prompt=negative_prompt,
|
902 |
-
)
|
903 |
-
pooled_prompt_embeds_ *= neg_content_scale
|
904 |
-
else:
|
905 |
-
pooled_prompt_embeds_ = neg_content_emb
|
906 |
-
else:
|
907 |
-
pooled_prompt_embeds_ = None
|
908 |
-
|
909 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image,
|
910 |
-
content_prompt_embeds=pooled_prompt_embeds_)
|
911 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
912 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
913 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
914 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
915 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
916 |
-
|
917 |
-
with torch.inference_mode():
|
918 |
-
(
|
919 |
-
prompt_embeds,
|
920 |
-
negative_prompt_embeds,
|
921 |
-
pooled_prompt_embeds,
|
922 |
-
negative_pooled_prompt_embeds,
|
923 |
-
) = self.pipe.encode_prompt(
|
924 |
-
prompt,
|
925 |
-
num_images_per_prompt=num_samples,
|
926 |
-
do_classifier_free_guidance=True,
|
927 |
-
negative_prompt=negative_prompt,
|
928 |
-
)
|
929 |
-
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
930 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
931 |
-
|
932 |
-
self.generator = get_generator(seed, self.device)
|
933 |
-
|
934 |
-
images = self.pipe(
|
935 |
-
prompt_embeds=prompt_embeds,
|
936 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
937 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
938 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
939 |
-
num_inference_steps=num_inference_steps,
|
940 |
-
generator=self.generator,
|
941 |
-
**kwargs,
|
942 |
-
).images
|
943 |
-
|
944 |
-
return images
|
945 |
-
|
946 |
-
|
947 |
-
class IPAdapterPlus(IPAdapter):
|
948 |
-
"""IP-Adapter with fine-grained features"""
|
949 |
-
|
950 |
-
def init_proj(self):
|
951 |
-
image_proj_model = Resampler(
|
952 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
953 |
-
depth=4,
|
954 |
-
dim_head=64,
|
955 |
-
heads=12,
|
956 |
-
num_queries=self.num_tokens,
|
957 |
-
embedding_dim=self.image_encoder.config.hidden_size,
|
958 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
959 |
-
ff_mult=4,
|
960 |
-
).to(self.device, dtype=torch.float16)
|
961 |
-
return image_proj_model
|
962 |
-
|
963 |
-
@torch.inference_mode()
|
964 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
965 |
-
if isinstance(pil_image, Image.Image):
|
966 |
-
pil_image = [pil_image]
|
967 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
968 |
-
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
969 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
970 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
971 |
-
uncond_clip_image_embeds = self.image_encoder(
|
972 |
-
torch.zeros_like(clip_image), output_hidden_states=True
|
973 |
-
).hidden_states[-2]
|
974 |
-
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
975 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
976 |
-
|
977 |
-
|
978 |
-
class IPAdapterFull(IPAdapterPlus):
|
979 |
-
"""IP-Adapter with full features"""
|
980 |
-
|
981 |
-
def init_proj(self):
|
982 |
-
image_proj_model = MLPProjModel(
|
983 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
984 |
-
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
985 |
-
).to(self.device, dtype=torch.float16)
|
986 |
-
return image_proj_model
|
987 |
-
|
988 |
-
|
989 |
-
class IPAdapterPlusXL(IPAdapter):
|
990 |
-
"""SDXL"""
|
991 |
-
|
992 |
-
def init_proj(self):
|
993 |
-
image_proj_model = Resampler(
|
994 |
-
dim=1280,
|
995 |
-
depth=4,
|
996 |
-
dim_head=64,
|
997 |
-
heads=20,
|
998 |
-
num_queries=self.num_tokens,
|
999 |
-
embedding_dim=self.image_encoder.config.hidden_size,
|
1000 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
1001 |
-
ff_mult=4,
|
1002 |
-
).to(self.device, dtype=torch.float16)
|
1003 |
-
return image_proj_model
|
1004 |
-
|
1005 |
-
@torch.inference_mode()
|
1006 |
-
def get_image_embeds(self, pil_image):
|
1007 |
-
if isinstance(pil_image, Image.Image):
|
1008 |
-
pil_image = [pil_image]
|
1009 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
1010 |
-
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
1011 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
1012 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
1013 |
-
uncond_clip_image_embeds = self.image_encoder(
|
1014 |
-
torch.zeros_like(clip_image), output_hidden_states=True
|
1015 |
-
).hidden_states[-2]
|
1016 |
-
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
1017 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
1018 |
-
|
1019 |
-
def generate(
|
1020 |
-
self,
|
1021 |
-
pil_image,
|
1022 |
-
prompt=None,
|
1023 |
-
negative_prompt=None,
|
1024 |
-
scale=1.0,
|
1025 |
-
num_samples=4,
|
1026 |
-
seed=None,
|
1027 |
-
num_inference_steps=30,
|
1028 |
-
**kwargs,
|
1029 |
-
):
|
1030 |
-
self.set_scale(scale)
|
1031 |
-
|
1032 |
-
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
1033 |
-
|
1034 |
-
if prompt is None:
|
1035 |
-
prompt = "best quality, high quality"
|
1036 |
-
if negative_prompt is None:
|
1037 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
1038 |
-
|
1039 |
-
if not isinstance(prompt, List):
|
1040 |
-
prompt = [prompt] * num_prompts
|
1041 |
-
if not isinstance(negative_prompt, List):
|
1042 |
-
negative_prompt = [negative_prompt] * num_prompts
|
1043 |
-
|
1044 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
1045 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
1046 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
1047 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
1048 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
1049 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
1050 |
-
|
1051 |
-
with torch.inference_mode():
|
1052 |
-
(
|
1053 |
-
prompt_embeds,
|
1054 |
-
negative_prompt_embeds,
|
1055 |
-
pooled_prompt_embeds,
|
1056 |
-
negative_pooled_prompt_embeds,
|
1057 |
-
) = self.pipe.encode_prompt(
|
1058 |
-
prompt,
|
1059 |
-
num_images_per_prompt=num_samples,
|
1060 |
-
do_classifier_free_guidance=True,
|
1061 |
-
negative_prompt=negative_prompt,
|
1062 |
-
)
|
1063 |
-
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
1064 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
1065 |
-
|
1066 |
-
generator = get_generator(seed, self.device)
|
1067 |
-
|
1068 |
-
images = self.pipe(
|
1069 |
-
prompt_embeds=prompt_embeds,
|
1070 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
1071 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1072 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1073 |
-
num_inference_steps=num_inference_steps,
|
1074 |
-
generator=generator,
|
1075 |
-
**kwargs,
|
1076 |
-
).images
|
1077 |
-
|
1078 |
-
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter___init__.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull,IPAdapterXL_CS,IPAdapter_CS
|
2 |
-
from .ip_adapter import CSGO
|
3 |
-
__all__ = [
|
4 |
-
"IPAdapter",
|
5 |
-
"IPAdapterPlus",
|
6 |
-
"IPAdapterPlusXL",
|
7 |
-
"IPAdapterXL",
|
8 |
-
"CSGO"
|
9 |
-
"IPAdapterFull",
|
10 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter_attention_processor.py
DELETED
@@ -1,754 +0,0 @@
|
|
1 |
-
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
class AttnProcessor(nn.Module):
|
8 |
-
r"""
|
9 |
-
Default processor for performing attention-related computations.
|
10 |
-
"""
|
11 |
-
|
12 |
-
def __init__(
|
13 |
-
self,
|
14 |
-
hidden_size=None,
|
15 |
-
cross_attention_dim=None,
|
16 |
-
save_in_unet='down',
|
17 |
-
atten_control=None,
|
18 |
-
):
|
19 |
-
super().__init__()
|
20 |
-
self.atten_control = atten_control
|
21 |
-
self.save_in_unet = save_in_unet
|
22 |
-
|
23 |
-
def __call__(
|
24 |
-
self,
|
25 |
-
attn,
|
26 |
-
hidden_states,
|
27 |
-
encoder_hidden_states=None,
|
28 |
-
attention_mask=None,
|
29 |
-
temb=None,
|
30 |
-
):
|
31 |
-
residual = hidden_states
|
32 |
-
|
33 |
-
if attn.spatial_norm is not None:
|
34 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
35 |
-
|
36 |
-
input_ndim = hidden_states.ndim
|
37 |
-
|
38 |
-
if input_ndim == 4:
|
39 |
-
batch_size, channel, height, width = hidden_states.shape
|
40 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
41 |
-
|
42 |
-
batch_size, sequence_length, _ = (
|
43 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
44 |
-
)
|
45 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
46 |
-
|
47 |
-
if attn.group_norm is not None:
|
48 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
49 |
-
|
50 |
-
query = attn.to_q(hidden_states)
|
51 |
-
|
52 |
-
if encoder_hidden_states is None:
|
53 |
-
encoder_hidden_states = hidden_states
|
54 |
-
elif attn.norm_cross:
|
55 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
56 |
-
|
57 |
-
key = attn.to_k(encoder_hidden_states)
|
58 |
-
value = attn.to_v(encoder_hidden_states)
|
59 |
-
|
60 |
-
query = attn.head_to_batch_dim(query)
|
61 |
-
key = attn.head_to_batch_dim(key)
|
62 |
-
value = attn.head_to_batch_dim(value)
|
63 |
-
|
64 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
65 |
-
hidden_states = torch.bmm(attention_probs, value)
|
66 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
67 |
-
|
68 |
-
# linear proj
|
69 |
-
hidden_states = attn.to_out[0](hidden_states)
|
70 |
-
# dropout
|
71 |
-
hidden_states = attn.to_out[1](hidden_states)
|
72 |
-
|
73 |
-
if input_ndim == 4:
|
74 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
75 |
-
|
76 |
-
if attn.residual_connection:
|
77 |
-
hidden_states = hidden_states + residual
|
78 |
-
|
79 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
80 |
-
|
81 |
-
return hidden_states
|
82 |
-
|
83 |
-
|
84 |
-
class IPAttnProcessor(nn.Module):
|
85 |
-
r"""
|
86 |
-
Attention processor for IP-Adapater.
|
87 |
-
Args:
|
88 |
-
hidden_size (`int`):
|
89 |
-
The hidden size of the attention layer.
|
90 |
-
cross_attention_dim (`int`):
|
91 |
-
The number of channels in the `encoder_hidden_states`.
|
92 |
-
scale (`float`, defaults to 1.0):
|
93 |
-
the weight scale of image prompt.
|
94 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
95 |
-
The context length of the image features.
|
96 |
-
"""
|
97 |
-
|
98 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None):
|
99 |
-
super().__init__()
|
100 |
-
|
101 |
-
self.hidden_size = hidden_size
|
102 |
-
self.cross_attention_dim = cross_attention_dim
|
103 |
-
self.scale = scale
|
104 |
-
self.num_tokens = num_tokens
|
105 |
-
self.skip = skip
|
106 |
-
|
107 |
-
self.atten_control = atten_control
|
108 |
-
self.save_in_unet = save_in_unet
|
109 |
-
|
110 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
111 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
112 |
-
|
113 |
-
def __call__(
|
114 |
-
self,
|
115 |
-
attn,
|
116 |
-
hidden_states,
|
117 |
-
encoder_hidden_states=None,
|
118 |
-
attention_mask=None,
|
119 |
-
temb=None,
|
120 |
-
):
|
121 |
-
residual = hidden_states
|
122 |
-
|
123 |
-
if attn.spatial_norm is not None:
|
124 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
125 |
-
|
126 |
-
input_ndim = hidden_states.ndim
|
127 |
-
|
128 |
-
if input_ndim == 4:
|
129 |
-
batch_size, channel, height, width = hidden_states.shape
|
130 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
131 |
-
|
132 |
-
batch_size, sequence_length, _ = (
|
133 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
134 |
-
)
|
135 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
136 |
-
|
137 |
-
if attn.group_norm is not None:
|
138 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
139 |
-
|
140 |
-
query = attn.to_q(hidden_states)
|
141 |
-
|
142 |
-
if encoder_hidden_states is None:
|
143 |
-
encoder_hidden_states = hidden_states
|
144 |
-
else:
|
145 |
-
# get encoder_hidden_states, ip_hidden_states
|
146 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
147 |
-
encoder_hidden_states, ip_hidden_states = (
|
148 |
-
encoder_hidden_states[:, :end_pos, :],
|
149 |
-
encoder_hidden_states[:, end_pos:, :],
|
150 |
-
)
|
151 |
-
if attn.norm_cross:
|
152 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
153 |
-
|
154 |
-
key = attn.to_k(encoder_hidden_states)
|
155 |
-
value = attn.to_v(encoder_hidden_states)
|
156 |
-
|
157 |
-
query = attn.head_to_batch_dim(query)
|
158 |
-
key = attn.head_to_batch_dim(key)
|
159 |
-
value = attn.head_to_batch_dim(value)
|
160 |
-
|
161 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
162 |
-
hidden_states = torch.bmm(attention_probs, value)
|
163 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
164 |
-
|
165 |
-
if not self.skip:
|
166 |
-
# for ip-adapter
|
167 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
168 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
169 |
-
|
170 |
-
ip_key = attn.head_to_batch_dim(ip_key)
|
171 |
-
ip_value = attn.head_to_batch_dim(ip_value)
|
172 |
-
|
173 |
-
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
174 |
-
self.attn_map = ip_attention_probs
|
175 |
-
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
176 |
-
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
177 |
-
|
178 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
179 |
-
|
180 |
-
# linear proj
|
181 |
-
hidden_states = attn.to_out[0](hidden_states)
|
182 |
-
# dropout
|
183 |
-
hidden_states = attn.to_out[1](hidden_states)
|
184 |
-
|
185 |
-
if input_ndim == 4:
|
186 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
187 |
-
|
188 |
-
if attn.residual_connection:
|
189 |
-
hidden_states = hidden_states + residual
|
190 |
-
|
191 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
192 |
-
|
193 |
-
return hidden_states
|
194 |
-
|
195 |
-
|
196 |
-
class AttnProcessor2_0(torch.nn.Module):
|
197 |
-
r"""
|
198 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
199 |
-
"""
|
200 |
-
|
201 |
-
def __init__(
|
202 |
-
self,
|
203 |
-
hidden_size=None,
|
204 |
-
cross_attention_dim=None,
|
205 |
-
save_in_unet='down',
|
206 |
-
atten_control=None,
|
207 |
-
):
|
208 |
-
super().__init__()
|
209 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
210 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
211 |
-
self.atten_control = atten_control
|
212 |
-
self.save_in_unet = save_in_unet
|
213 |
-
|
214 |
-
def __call__(
|
215 |
-
self,
|
216 |
-
attn,
|
217 |
-
hidden_states,
|
218 |
-
encoder_hidden_states=None,
|
219 |
-
attention_mask=None,
|
220 |
-
temb=None,
|
221 |
-
):
|
222 |
-
residual = hidden_states
|
223 |
-
|
224 |
-
if attn.spatial_norm is not None:
|
225 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
226 |
-
|
227 |
-
input_ndim = hidden_states.ndim
|
228 |
-
|
229 |
-
if input_ndim == 4:
|
230 |
-
batch_size, channel, height, width = hidden_states.shape
|
231 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
232 |
-
|
233 |
-
batch_size, sequence_length, _ = (
|
234 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
235 |
-
)
|
236 |
-
|
237 |
-
if attention_mask is not None:
|
238 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
239 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
240 |
-
# (batch, heads, source_length, target_length)
|
241 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
242 |
-
|
243 |
-
if attn.group_norm is not None:
|
244 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
245 |
-
|
246 |
-
query = attn.to_q(hidden_states)
|
247 |
-
|
248 |
-
if encoder_hidden_states is None:
|
249 |
-
encoder_hidden_states = hidden_states
|
250 |
-
elif attn.norm_cross:
|
251 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
252 |
-
|
253 |
-
key = attn.to_k(encoder_hidden_states)
|
254 |
-
value = attn.to_v(encoder_hidden_states)
|
255 |
-
|
256 |
-
inner_dim = key.shape[-1]
|
257 |
-
head_dim = inner_dim // attn.heads
|
258 |
-
|
259 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
260 |
-
|
261 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
262 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
263 |
-
|
264 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
265 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
266 |
-
hidden_states = F.scaled_dot_product_attention(
|
267 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
268 |
-
)
|
269 |
-
|
270 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
271 |
-
hidden_states = hidden_states.to(query.dtype)
|
272 |
-
|
273 |
-
# linear proj
|
274 |
-
hidden_states = attn.to_out[0](hidden_states)
|
275 |
-
# dropout
|
276 |
-
hidden_states = attn.to_out[1](hidden_states)
|
277 |
-
|
278 |
-
if input_ndim == 4:
|
279 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
280 |
-
|
281 |
-
if attn.residual_connection:
|
282 |
-
hidden_states = hidden_states + residual
|
283 |
-
|
284 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
285 |
-
|
286 |
-
return hidden_states
|
287 |
-
|
288 |
-
|
289 |
-
class IPAttnProcessor2_0(torch.nn.Module):
|
290 |
-
r"""
|
291 |
-
Attention processor for IP-Adapater for PyTorch 2.0.
|
292 |
-
Args:
|
293 |
-
hidden_size (`int`):
|
294 |
-
The hidden size of the attention layer.
|
295 |
-
cross_attention_dim (`int`):
|
296 |
-
The number of channels in the `encoder_hidden_states`.
|
297 |
-
scale (`float`, defaults to 1.0):
|
298 |
-
the weight scale of image prompt.
|
299 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
300 |
-
The context length of the image features.
|
301 |
-
"""
|
302 |
-
|
303 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, skip=False,save_in_unet='down', atten_control=None):
|
304 |
-
super().__init__()
|
305 |
-
|
306 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
307 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
308 |
-
|
309 |
-
self.hidden_size = hidden_size
|
310 |
-
self.cross_attention_dim = cross_attention_dim
|
311 |
-
self.scale = scale
|
312 |
-
self.num_tokens = num_tokens
|
313 |
-
self.skip = skip
|
314 |
-
|
315 |
-
self.atten_control = atten_control
|
316 |
-
self.save_in_unet = save_in_unet
|
317 |
-
|
318 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
319 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
320 |
-
|
321 |
-
def __call__(
|
322 |
-
self,
|
323 |
-
attn,
|
324 |
-
hidden_states,
|
325 |
-
encoder_hidden_states=None,
|
326 |
-
attention_mask=None,
|
327 |
-
temb=None,
|
328 |
-
):
|
329 |
-
residual = hidden_states
|
330 |
-
|
331 |
-
if attn.spatial_norm is not None:
|
332 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
333 |
-
|
334 |
-
input_ndim = hidden_states.ndim
|
335 |
-
|
336 |
-
if input_ndim == 4:
|
337 |
-
batch_size, channel, height, width = hidden_states.shape
|
338 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
339 |
-
|
340 |
-
batch_size, sequence_length, _ = (
|
341 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
342 |
-
)
|
343 |
-
|
344 |
-
if attention_mask is not None:
|
345 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
346 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
347 |
-
# (batch, heads, source_length, target_length)
|
348 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
349 |
-
|
350 |
-
if attn.group_norm is not None:
|
351 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
352 |
-
|
353 |
-
query = attn.to_q(hidden_states)
|
354 |
-
|
355 |
-
if encoder_hidden_states is None:
|
356 |
-
encoder_hidden_states = hidden_states
|
357 |
-
else:
|
358 |
-
# get encoder_hidden_states, ip_hidden_states
|
359 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
360 |
-
encoder_hidden_states, ip_hidden_states = (
|
361 |
-
encoder_hidden_states[:, :end_pos, :],
|
362 |
-
encoder_hidden_states[:, end_pos:, :],
|
363 |
-
)
|
364 |
-
if attn.norm_cross:
|
365 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
366 |
-
|
367 |
-
key = attn.to_k(encoder_hidden_states)
|
368 |
-
value = attn.to_v(encoder_hidden_states)
|
369 |
-
|
370 |
-
inner_dim = key.shape[-1]
|
371 |
-
head_dim = inner_dim // attn.heads
|
372 |
-
|
373 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
374 |
-
|
375 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
376 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
377 |
-
|
378 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
379 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
380 |
-
hidden_states = F.scaled_dot_product_attention(
|
381 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
382 |
-
)
|
383 |
-
|
384 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
385 |
-
hidden_states = hidden_states.to(query.dtype)
|
386 |
-
|
387 |
-
if not self.skip:
|
388 |
-
# for ip-adapter
|
389 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
390 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
391 |
-
|
392 |
-
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
393 |
-
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
394 |
-
|
395 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
396 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
397 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
398 |
-
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
399 |
-
)
|
400 |
-
with torch.no_grad():
|
401 |
-
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
402 |
-
#print(self.attn_map.shape)
|
403 |
-
|
404 |
-
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
405 |
-
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
406 |
-
|
407 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
408 |
-
|
409 |
-
# linear proj
|
410 |
-
hidden_states = attn.to_out[0](hidden_states)
|
411 |
-
# dropout
|
412 |
-
hidden_states = attn.to_out[1](hidden_states)
|
413 |
-
|
414 |
-
if input_ndim == 4:
|
415 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
416 |
-
|
417 |
-
if attn.residual_connection:
|
418 |
-
hidden_states = hidden_states + residual
|
419 |
-
|
420 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
421 |
-
|
422 |
-
return hidden_states
|
423 |
-
|
424 |
-
|
425 |
-
class IP_CS_AttnProcessor2_0(torch.nn.Module):
|
426 |
-
r"""
|
427 |
-
Attention processor for IP-Adapater for PyTorch 2.0.
|
428 |
-
Args:
|
429 |
-
hidden_size (`int`):
|
430 |
-
The hidden size of the attention layer.
|
431 |
-
cross_attention_dim (`int`):
|
432 |
-
The number of channels in the `encoder_hidden_states`.
|
433 |
-
scale (`float`, defaults to 1.0):
|
434 |
-
the weight scale of image prompt.
|
435 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
436 |
-
The context length of the image features.
|
437 |
-
"""
|
438 |
-
|
439 |
-
def __init__(self, hidden_size, cross_attention_dim=None, content_scale=1.0,style_scale=1.0, num_content_tokens=4,num_style_tokens=4,
|
440 |
-
skip=False,content=False, style=False):
|
441 |
-
super().__init__()
|
442 |
-
|
443 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
444 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
445 |
-
|
446 |
-
self.hidden_size = hidden_size
|
447 |
-
self.cross_attention_dim = cross_attention_dim
|
448 |
-
self.content_scale = content_scale
|
449 |
-
self.style_scale = style_scale
|
450 |
-
self.num_content_tokens = num_content_tokens
|
451 |
-
self.num_style_tokens = num_style_tokens
|
452 |
-
self.skip = skip
|
453 |
-
|
454 |
-
self.content = content
|
455 |
-
self.style = style
|
456 |
-
|
457 |
-
if self.content or self.style:
|
458 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
459 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
460 |
-
self.to_k_ip_content =None
|
461 |
-
self.to_v_ip_content =None
|
462 |
-
|
463 |
-
def set_content_ipa(self,content_scale=1.0):
|
464 |
-
|
465 |
-
self.to_k_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
|
466 |
-
self.to_v_ip_content = nn.Linear(self.cross_attention_dim or self.hidden_size, self.hidden_size, bias=False)
|
467 |
-
self.content_scale=content_scale
|
468 |
-
self.content =True
|
469 |
-
|
470 |
-
def __call__(
|
471 |
-
self,
|
472 |
-
attn,
|
473 |
-
hidden_states,
|
474 |
-
encoder_hidden_states=None,
|
475 |
-
attention_mask=None,
|
476 |
-
temb=None,
|
477 |
-
):
|
478 |
-
residual = hidden_states
|
479 |
-
|
480 |
-
if attn.spatial_norm is not None:
|
481 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
482 |
-
|
483 |
-
input_ndim = hidden_states.ndim
|
484 |
-
|
485 |
-
if input_ndim == 4:
|
486 |
-
batch_size, channel, height, width = hidden_states.shape
|
487 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
488 |
-
|
489 |
-
batch_size, sequence_length, _ = (
|
490 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
491 |
-
)
|
492 |
-
|
493 |
-
if attention_mask is not None:
|
494 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
495 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
496 |
-
# (batch, heads, source_length, target_length)
|
497 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
498 |
-
|
499 |
-
if attn.group_norm is not None:
|
500 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
501 |
-
|
502 |
-
query = attn.to_q(hidden_states)
|
503 |
-
|
504 |
-
if encoder_hidden_states is None:
|
505 |
-
encoder_hidden_states = hidden_states
|
506 |
-
else:
|
507 |
-
# get encoder_hidden_states, ip_hidden_states
|
508 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_content_tokens-self.num_style_tokens
|
509 |
-
encoder_hidden_states, ip_content_hidden_states,ip_style_hidden_states = (
|
510 |
-
encoder_hidden_states[:, :end_pos, :],
|
511 |
-
encoder_hidden_states[:, end_pos:end_pos + self.num_content_tokens, :],
|
512 |
-
encoder_hidden_states[:, end_pos + self.num_content_tokens:, :],
|
513 |
-
)
|
514 |
-
if attn.norm_cross:
|
515 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
516 |
-
|
517 |
-
key = attn.to_k(encoder_hidden_states)
|
518 |
-
value = attn.to_v(encoder_hidden_states)
|
519 |
-
|
520 |
-
inner_dim = key.shape[-1]
|
521 |
-
head_dim = inner_dim // attn.heads
|
522 |
-
|
523 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
524 |
-
|
525 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
526 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
527 |
-
|
528 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
529 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
530 |
-
hidden_states = F.scaled_dot_product_attention(
|
531 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
532 |
-
)
|
533 |
-
|
534 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
535 |
-
hidden_states = hidden_states.to(query.dtype)
|
536 |
-
|
537 |
-
if not self.skip and self.content is True:
|
538 |
-
# print('content#####################################################')
|
539 |
-
# for ip-content-adapter
|
540 |
-
if self.to_k_ip_content is None:
|
541 |
-
|
542 |
-
ip_content_key = self.to_k_ip(ip_content_hidden_states)
|
543 |
-
ip_content_value = self.to_v_ip(ip_content_hidden_states)
|
544 |
-
else:
|
545 |
-
ip_content_key = self.to_k_ip_content(ip_content_hidden_states)
|
546 |
-
ip_content_value = self.to_v_ip_content(ip_content_hidden_states)
|
547 |
-
|
548 |
-
ip_content_key = ip_content_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
549 |
-
ip_content_value = ip_content_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
550 |
-
|
551 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
552 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
553 |
-
ip_content_hidden_states = F.scaled_dot_product_attention(
|
554 |
-
query, ip_content_key, ip_content_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
555 |
-
)
|
556 |
-
|
557 |
-
|
558 |
-
ip_content_hidden_states = ip_content_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
559 |
-
ip_content_hidden_states = ip_content_hidden_states.to(query.dtype)
|
560 |
-
|
561 |
-
|
562 |
-
hidden_states = hidden_states + self.content_scale * ip_content_hidden_states
|
563 |
-
|
564 |
-
if not self.skip and self.style is True:
|
565 |
-
# for ip-style-adapter
|
566 |
-
ip_style_key = self.to_k_ip(ip_style_hidden_states)
|
567 |
-
ip_style_value = self.to_v_ip(ip_style_hidden_states)
|
568 |
-
|
569 |
-
ip_style_key = ip_style_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
570 |
-
ip_style_value = ip_style_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
571 |
-
|
572 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
573 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
574 |
-
ip_style_hidden_states = F.scaled_dot_product_attention(
|
575 |
-
query, ip_style_key, ip_style_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
576 |
-
)
|
577 |
-
|
578 |
-
ip_style_hidden_states = ip_style_hidden_states.transpose(1, 2).reshape(batch_size, -1,
|
579 |
-
attn.heads * head_dim)
|
580 |
-
ip_style_hidden_states = ip_style_hidden_states.to(query.dtype)
|
581 |
-
|
582 |
-
hidden_states = hidden_states + self.style_scale * ip_style_hidden_states
|
583 |
-
|
584 |
-
# linear proj
|
585 |
-
hidden_states = attn.to_out[0](hidden_states)
|
586 |
-
# dropout
|
587 |
-
hidden_states = attn.to_out[1](hidden_states)
|
588 |
-
|
589 |
-
if input_ndim == 4:
|
590 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
591 |
-
|
592 |
-
if attn.residual_connection:
|
593 |
-
hidden_states = hidden_states + residual
|
594 |
-
|
595 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
596 |
-
|
597 |
-
return hidden_states
|
598 |
-
|
599 |
-
## for controlnet
|
600 |
-
class CNAttnProcessor:
|
601 |
-
r"""
|
602 |
-
Default processor for performing attention-related computations.
|
603 |
-
"""
|
604 |
-
|
605 |
-
def __init__(self, num_tokens=4,save_in_unet='down',atten_control=None):
|
606 |
-
self.num_tokens = num_tokens
|
607 |
-
self.atten_control = atten_control
|
608 |
-
self.save_in_unet = save_in_unet
|
609 |
-
|
610 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
611 |
-
residual = hidden_states
|
612 |
-
|
613 |
-
if attn.spatial_norm is not None:
|
614 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
615 |
-
|
616 |
-
input_ndim = hidden_states.ndim
|
617 |
-
|
618 |
-
if input_ndim == 4:
|
619 |
-
batch_size, channel, height, width = hidden_states.shape
|
620 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
621 |
-
|
622 |
-
batch_size, sequence_length, _ = (
|
623 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
624 |
-
)
|
625 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
626 |
-
|
627 |
-
if attn.group_norm is not None:
|
628 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
629 |
-
|
630 |
-
query = attn.to_q(hidden_states)
|
631 |
-
|
632 |
-
if encoder_hidden_states is None:
|
633 |
-
encoder_hidden_states = hidden_states
|
634 |
-
else:
|
635 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
636 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
637 |
-
if attn.norm_cross:
|
638 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
639 |
-
|
640 |
-
key = attn.to_k(encoder_hidden_states)
|
641 |
-
value = attn.to_v(encoder_hidden_states)
|
642 |
-
|
643 |
-
query = attn.head_to_batch_dim(query)
|
644 |
-
key = attn.head_to_batch_dim(key)
|
645 |
-
value = attn.head_to_batch_dim(value)
|
646 |
-
|
647 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
648 |
-
hidden_states = torch.bmm(attention_probs, value)
|
649 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
650 |
-
|
651 |
-
# linear proj
|
652 |
-
hidden_states = attn.to_out[0](hidden_states)
|
653 |
-
# dropout
|
654 |
-
hidden_states = attn.to_out[1](hidden_states)
|
655 |
-
|
656 |
-
if input_ndim == 4:
|
657 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
658 |
-
|
659 |
-
if attn.residual_connection:
|
660 |
-
hidden_states = hidden_states + residual
|
661 |
-
|
662 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
663 |
-
|
664 |
-
return hidden_states
|
665 |
-
|
666 |
-
|
667 |
-
class CNAttnProcessor2_0:
|
668 |
-
r"""
|
669 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
670 |
-
"""
|
671 |
-
|
672 |
-
def __init__(self, num_tokens=4, save_in_unet='down', atten_control=None):
|
673 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
674 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
675 |
-
self.num_tokens = num_tokens
|
676 |
-
self.atten_control = atten_control
|
677 |
-
self.save_in_unet = save_in_unet
|
678 |
-
|
679 |
-
def __call__(
|
680 |
-
self,
|
681 |
-
attn,
|
682 |
-
hidden_states,
|
683 |
-
encoder_hidden_states=None,
|
684 |
-
attention_mask=None,
|
685 |
-
temb=None,
|
686 |
-
):
|
687 |
-
residual = hidden_states
|
688 |
-
|
689 |
-
if attn.spatial_norm is not None:
|
690 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
691 |
-
|
692 |
-
input_ndim = hidden_states.ndim
|
693 |
-
|
694 |
-
if input_ndim == 4:
|
695 |
-
batch_size, channel, height, width = hidden_states.shape
|
696 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
697 |
-
|
698 |
-
batch_size, sequence_length, _ = (
|
699 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
700 |
-
)
|
701 |
-
|
702 |
-
if attention_mask is not None:
|
703 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
704 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
705 |
-
# (batch, heads, source_length, target_length)
|
706 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
707 |
-
|
708 |
-
if attn.group_norm is not None:
|
709 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
710 |
-
|
711 |
-
query = attn.to_q(hidden_states)
|
712 |
-
|
713 |
-
if encoder_hidden_states is None:
|
714 |
-
encoder_hidden_states = hidden_states
|
715 |
-
else:
|
716 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
717 |
-
encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
|
718 |
-
if attn.norm_cross:
|
719 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
720 |
-
|
721 |
-
key = attn.to_k(encoder_hidden_states)
|
722 |
-
value = attn.to_v(encoder_hidden_states)
|
723 |
-
|
724 |
-
inner_dim = key.shape[-1]
|
725 |
-
head_dim = inner_dim // attn.heads
|
726 |
-
|
727 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
728 |
-
|
729 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
730 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
731 |
-
|
732 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
733 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
734 |
-
hidden_states = F.scaled_dot_product_attention(
|
735 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
736 |
-
)
|
737 |
-
|
738 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
739 |
-
hidden_states = hidden_states.to(query.dtype)
|
740 |
-
|
741 |
-
# linear proj
|
742 |
-
hidden_states = attn.to_out[0](hidden_states)
|
743 |
-
# dropout
|
744 |
-
hidden_states = attn.to_out[1](hidden_states)
|
745 |
-
|
746 |
-
if input_ndim == 4:
|
747 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
748 |
-
|
749 |
-
if attn.residual_connection:
|
750 |
-
hidden_states = hidden_states + residual
|
751 |
-
|
752 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
753 |
-
|
754 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter_ip_adapter.py
DELETED
@@ -1,1078 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from diffusers import StableDiffusionPipeline
|
6 |
-
from diffusers.pipelines.controlnet import MultiControlNetModel
|
7 |
-
from PIL import Image
|
8 |
-
from safetensors import safe_open
|
9 |
-
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
10 |
-
from torchvision import transforms
|
11 |
-
from .utils import is_torch2_available, get_generator
|
12 |
-
|
13 |
-
# import torchvision.transforms.functional as Func
|
14 |
-
|
15 |
-
# from .clip_style_models import CSD_CLIP, convert_state_dict
|
16 |
-
|
17 |
-
if is_torch2_available():
|
18 |
-
from .attention_processor import (
|
19 |
-
AttnProcessor2_0 as AttnProcessor,
|
20 |
-
)
|
21 |
-
from .attention_processor import (
|
22 |
-
CNAttnProcessor2_0 as CNAttnProcessor,
|
23 |
-
)
|
24 |
-
from .attention_processor import (
|
25 |
-
IPAttnProcessor2_0 as IPAttnProcessor,
|
26 |
-
)
|
27 |
-
from .attention_processor import IP_CS_AttnProcessor2_0 as IP_CS_AttnProcessor
|
28 |
-
else:
|
29 |
-
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
|
30 |
-
from .resampler import Resampler
|
31 |
-
|
32 |
-
from transformers import AutoImageProcessor, AutoModel
|
33 |
-
|
34 |
-
|
35 |
-
class ImageProjModel(torch.nn.Module):
|
36 |
-
"""Projection Model"""
|
37 |
-
|
38 |
-
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
39 |
-
super().__init__()
|
40 |
-
|
41 |
-
self.generator = None
|
42 |
-
self.cross_attention_dim = cross_attention_dim
|
43 |
-
self.clip_extra_context_tokens = clip_extra_context_tokens
|
44 |
-
# print(clip_embeddings_dim, self.clip_extra_context_tokens, cross_attention_dim)
|
45 |
-
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
46 |
-
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
47 |
-
|
48 |
-
def forward(self, image_embeds):
|
49 |
-
embeds = image_embeds
|
50 |
-
clip_extra_context_tokens = self.proj(embeds).reshape(
|
51 |
-
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
52 |
-
)
|
53 |
-
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
54 |
-
return clip_extra_context_tokens
|
55 |
-
|
56 |
-
|
57 |
-
class MLPProjModel(torch.nn.Module):
|
58 |
-
"""SD model with image prompt"""
|
59 |
-
|
60 |
-
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
61 |
-
super().__init__()
|
62 |
-
|
63 |
-
self.proj = torch.nn.Sequential(
|
64 |
-
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
65 |
-
torch.nn.GELU(),
|
66 |
-
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
67 |
-
torch.nn.LayerNorm(cross_attention_dim)
|
68 |
-
)
|
69 |
-
|
70 |
-
def forward(self, image_embeds):
|
71 |
-
clip_extra_context_tokens = self.proj(image_embeds)
|
72 |
-
return clip_extra_context_tokens
|
73 |
-
|
74 |
-
|
75 |
-
class IPAdapter:
|
76 |
-
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, target_blocks=["block"]):
|
77 |
-
self.device = device
|
78 |
-
self.image_encoder_path = image_encoder_path
|
79 |
-
self.ip_ckpt = ip_ckpt
|
80 |
-
self.num_tokens = num_tokens
|
81 |
-
self.target_blocks = target_blocks
|
82 |
-
|
83 |
-
self.pipe = sd_pipe.to(self.device)
|
84 |
-
self.set_ip_adapter()
|
85 |
-
|
86 |
-
# load image encoder
|
87 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
88 |
-
self.device, dtype=torch.float16
|
89 |
-
)
|
90 |
-
self.clip_image_processor = CLIPImageProcessor()
|
91 |
-
# image proj model
|
92 |
-
self.image_proj_model = self.init_proj()
|
93 |
-
|
94 |
-
self.load_ip_adapter()
|
95 |
-
|
96 |
-
def init_proj(self):
|
97 |
-
image_proj_model = ImageProjModel(
|
98 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
99 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
100 |
-
clip_extra_context_tokens=self.num_tokens,
|
101 |
-
).to(self.device, dtype=torch.float16)
|
102 |
-
return image_proj_model
|
103 |
-
|
104 |
-
def set_ip_adapter(self):
|
105 |
-
unet = self.pipe.unet
|
106 |
-
attn_procs = {}
|
107 |
-
for name in unet.attn_processors.keys():
|
108 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
109 |
-
if name.startswith("mid_block"):
|
110 |
-
hidden_size = unet.config.block_out_channels[-1]
|
111 |
-
elif name.startswith("up_blocks"):
|
112 |
-
block_id = int(name[len("up_blocks.")])
|
113 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
114 |
-
elif name.startswith("down_blocks"):
|
115 |
-
block_id = int(name[len("down_blocks.")])
|
116 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
117 |
-
if cross_attention_dim is None:
|
118 |
-
attn_procs[name] = AttnProcessor()
|
119 |
-
else:
|
120 |
-
selected = False
|
121 |
-
for block_name in self.target_blocks:
|
122 |
-
if block_name in name:
|
123 |
-
selected = True
|
124 |
-
break
|
125 |
-
if selected:
|
126 |
-
attn_procs[name] = IPAttnProcessor(
|
127 |
-
hidden_size=hidden_size,
|
128 |
-
cross_attention_dim=cross_attention_dim,
|
129 |
-
scale=1.0,
|
130 |
-
num_tokens=self.num_tokens,
|
131 |
-
).to(self.device, dtype=torch.float16)
|
132 |
-
else:
|
133 |
-
attn_procs[name] = IPAttnProcessor(
|
134 |
-
hidden_size=hidden_size,
|
135 |
-
cross_attention_dim=cross_attention_dim,
|
136 |
-
scale=1.0,
|
137 |
-
num_tokens=self.num_tokens,
|
138 |
-
skip=True
|
139 |
-
).to(self.device, dtype=torch.float16)
|
140 |
-
unet.set_attn_processor(attn_procs)
|
141 |
-
if hasattr(self.pipe, "controlnet"):
|
142 |
-
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
143 |
-
for controlnet in self.pipe.controlnet.nets:
|
144 |
-
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
145 |
-
else:
|
146 |
-
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
|
147 |
-
|
148 |
-
def load_ip_adapter(self):
|
149 |
-
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
150 |
-
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
151 |
-
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
152 |
-
for key in f.keys():
|
153 |
-
if key.startswith("image_proj."):
|
154 |
-
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
155 |
-
elif key.startswith("ip_adapter."):
|
156 |
-
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
157 |
-
else:
|
158 |
-
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
159 |
-
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
160 |
-
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
161 |
-
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
|
162 |
-
|
163 |
-
@torch.inference_mode()
|
164 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None):
|
165 |
-
if pil_image is not None:
|
166 |
-
if isinstance(pil_image, Image.Image):
|
167 |
-
pil_image = [pil_image]
|
168 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
169 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
170 |
-
else:
|
171 |
-
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
172 |
-
|
173 |
-
if content_prompt_embeds is not None:
|
174 |
-
clip_image_embeds = clip_image_embeds - content_prompt_embeds
|
175 |
-
|
176 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
177 |
-
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
|
178 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
179 |
-
|
180 |
-
def set_scale(self, scale):
|
181 |
-
for attn_processor in self.pipe.unet.attn_processors.values():
|
182 |
-
if isinstance(attn_processor, IPAttnProcessor):
|
183 |
-
attn_processor.scale = scale
|
184 |
-
|
185 |
-
def generate(
|
186 |
-
self,
|
187 |
-
pil_image=None,
|
188 |
-
clip_image_embeds=None,
|
189 |
-
prompt=None,
|
190 |
-
negative_prompt=None,
|
191 |
-
scale=1.0,
|
192 |
-
num_samples=4,
|
193 |
-
seed=None,
|
194 |
-
guidance_scale=7.5,
|
195 |
-
num_inference_steps=30,
|
196 |
-
neg_content_emb=None,
|
197 |
-
**kwargs,
|
198 |
-
):
|
199 |
-
self.set_scale(scale)
|
200 |
-
|
201 |
-
if pil_image is not None:
|
202 |
-
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
203 |
-
else:
|
204 |
-
num_prompts = clip_image_embeds.size(0)
|
205 |
-
|
206 |
-
if prompt is None:
|
207 |
-
prompt = "best quality, high quality"
|
208 |
-
if negative_prompt is None:
|
209 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
210 |
-
|
211 |
-
if not isinstance(prompt, List):
|
212 |
-
prompt = [prompt] * num_prompts
|
213 |
-
if not isinstance(negative_prompt, List):
|
214 |
-
negative_prompt = [negative_prompt] * num_prompts
|
215 |
-
|
216 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
|
217 |
-
pil_image=pil_image, clip_image_embeds=clip_image_embeds, content_prompt_embeds=neg_content_emb
|
218 |
-
)
|
219 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
220 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
221 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
222 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
223 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
224 |
-
|
225 |
-
with torch.inference_mode():
|
226 |
-
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
227 |
-
prompt,
|
228 |
-
device=self.device,
|
229 |
-
num_images_per_prompt=num_samples,
|
230 |
-
do_classifier_free_guidance=True,
|
231 |
-
negative_prompt=negative_prompt,
|
232 |
-
)
|
233 |
-
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
234 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
235 |
-
|
236 |
-
generator = get_generator(seed, self.device)
|
237 |
-
|
238 |
-
images = self.pipe(
|
239 |
-
prompt_embeds=prompt_embeds,
|
240 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
241 |
-
guidance_scale=guidance_scale,
|
242 |
-
num_inference_steps=num_inference_steps,
|
243 |
-
generator=generator,
|
244 |
-
**kwargs,
|
245 |
-
).images
|
246 |
-
|
247 |
-
return images
|
248 |
-
|
249 |
-
|
250 |
-
class IPAdapter_CS:
|
251 |
-
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_content_tokens=4,
|
252 |
-
num_style_tokens=4,
|
253 |
-
target_content_blocks=["block"], target_style_blocks=["block"], content_image_encoder_path=None,
|
254 |
-
controlnet_adapter=False,
|
255 |
-
controlnet_target_content_blocks=None,
|
256 |
-
controlnet_target_style_blocks=None,
|
257 |
-
content_model_resampler=False,
|
258 |
-
style_model_resampler=False,
|
259 |
-
):
|
260 |
-
self.device = device
|
261 |
-
self.image_encoder_path = image_encoder_path
|
262 |
-
self.ip_ckpt = ip_ckpt
|
263 |
-
self.num_content_tokens = num_content_tokens
|
264 |
-
self.num_style_tokens = num_style_tokens
|
265 |
-
self.content_target_blocks = target_content_blocks
|
266 |
-
self.style_target_blocks = target_style_blocks
|
267 |
-
|
268 |
-
self.content_model_resampler = content_model_resampler
|
269 |
-
self.style_model_resampler = style_model_resampler
|
270 |
-
|
271 |
-
self.controlnet_adapter = controlnet_adapter
|
272 |
-
self.controlnet_target_content_blocks = controlnet_target_content_blocks
|
273 |
-
self.controlnet_target_style_blocks = controlnet_target_style_blocks
|
274 |
-
|
275 |
-
self.pipe = sd_pipe.to(self.device)
|
276 |
-
self.set_ip_adapter()
|
277 |
-
self.content_image_encoder_path = content_image_encoder_path
|
278 |
-
|
279 |
-
|
280 |
-
# load image encoder
|
281 |
-
if content_image_encoder_path is not None:
|
282 |
-
self.content_image_encoder = AutoModel.from_pretrained(content_image_encoder_path).to(self.device,
|
283 |
-
dtype=torch.float16)
|
284 |
-
self.content_image_processor = AutoImageProcessor.from_pretrained(content_image_encoder_path)
|
285 |
-
else:
|
286 |
-
self.content_image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
287 |
-
self.device, dtype=torch.float16
|
288 |
-
)
|
289 |
-
self.content_image_processor = CLIPImageProcessor()
|
290 |
-
# model.requires_grad_(False)
|
291 |
-
|
292 |
-
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
293 |
-
self.device, dtype=torch.float16
|
294 |
-
)
|
295 |
-
# if self.use_CSD is not None:
|
296 |
-
# self.style_image_encoder = CSD_CLIP("vit_large", "default",self.use_CSD+"/ViT-L-14.pt")
|
297 |
-
# model_path = self.use_CSD+"/checkpoint.pth"
|
298 |
-
# checkpoint = torch.load(model_path, map_location="cpu")
|
299 |
-
# state_dict = convert_state_dict(checkpoint['model_state_dict'])
|
300 |
-
# self.style_image_encoder.load_state_dict(state_dict, strict=False)
|
301 |
-
#
|
302 |
-
# normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
303 |
-
# self.style_preprocess = transforms.Compose([
|
304 |
-
# transforms.Resize(size=224, interpolation=Func.InterpolationMode.BICUBIC),
|
305 |
-
# transforms.CenterCrop(224),
|
306 |
-
# transforms.ToTensor(),
|
307 |
-
# normalize,
|
308 |
-
# ])
|
309 |
-
|
310 |
-
self.clip_image_processor = CLIPImageProcessor()
|
311 |
-
# image proj model
|
312 |
-
self.content_image_proj_model = self.init_proj(self.num_content_tokens, content_or_style_='content',
|
313 |
-
model_resampler=self.content_model_resampler)
|
314 |
-
self.style_image_proj_model = self.init_proj(self.num_style_tokens, content_or_style_='style',
|
315 |
-
model_resampler=self.style_model_resampler)
|
316 |
-
|
317 |
-
self.load_ip_adapter()
|
318 |
-
|
319 |
-
def init_proj(self, num_tokens, content_or_style_='content', model_resampler=False):
|
320 |
-
|
321 |
-
# print('@@@@',self.pipe.unet.config.cross_attention_dim,self.image_encoder.config.projection_dim)
|
322 |
-
if content_or_style_ == 'content' and self.content_image_encoder_path is not None:
|
323 |
-
image_proj_model = ImageProjModel(
|
324 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
325 |
-
clip_embeddings_dim=self.content_image_encoder.config.projection_dim,
|
326 |
-
clip_extra_context_tokens=num_tokens,
|
327 |
-
).to(self.device, dtype=torch.float16)
|
328 |
-
return image_proj_model
|
329 |
-
|
330 |
-
image_proj_model = ImageProjModel(
|
331 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
332 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
333 |
-
clip_extra_context_tokens=num_tokens,
|
334 |
-
).to(self.device, dtype=torch.float16)
|
335 |
-
return image_proj_model
|
336 |
-
|
337 |
-
def set_ip_adapter(self):
|
338 |
-
unet = self.pipe.unet
|
339 |
-
attn_procs = {}
|
340 |
-
for name in unet.attn_processors.keys():
|
341 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
342 |
-
if name.startswith("mid_block"):
|
343 |
-
hidden_size = unet.config.block_out_channels[-1]
|
344 |
-
elif name.startswith("up_blocks"):
|
345 |
-
block_id = int(name[len("up_blocks.")])
|
346 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
347 |
-
elif name.startswith("down_blocks"):
|
348 |
-
block_id = int(name[len("down_blocks.")])
|
349 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
350 |
-
if cross_attention_dim is None:
|
351 |
-
attn_procs[name] = AttnProcessor()
|
352 |
-
else:
|
353 |
-
# layername_id += 1
|
354 |
-
selected = False
|
355 |
-
for block_name in self.style_target_blocks:
|
356 |
-
if block_name in name:
|
357 |
-
selected = True
|
358 |
-
# print(name)
|
359 |
-
attn_procs[name] = IP_CS_AttnProcessor(
|
360 |
-
hidden_size=hidden_size,
|
361 |
-
cross_attention_dim=cross_attention_dim,
|
362 |
-
style_scale=1.0,
|
363 |
-
style=True,
|
364 |
-
num_content_tokens=self.num_content_tokens,
|
365 |
-
num_style_tokens=self.num_style_tokens,
|
366 |
-
)
|
367 |
-
for block_name in self.content_target_blocks:
|
368 |
-
if block_name in name:
|
369 |
-
# selected = True
|
370 |
-
if selected is False:
|
371 |
-
attn_procs[name] = IP_CS_AttnProcessor(
|
372 |
-
hidden_size=hidden_size,
|
373 |
-
cross_attention_dim=cross_attention_dim,
|
374 |
-
content_scale=1.0,
|
375 |
-
content=True,
|
376 |
-
num_content_tokens=self.num_content_tokens,
|
377 |
-
num_style_tokens=self.num_style_tokens,
|
378 |
-
)
|
379 |
-
else:
|
380 |
-
attn_procs[name].set_content_ipa(content_scale=1.0)
|
381 |
-
# attn_procs[name].content=True
|
382 |
-
|
383 |
-
if selected is False:
|
384 |
-
attn_procs[name] = IP_CS_AttnProcessor(
|
385 |
-
hidden_size=hidden_size,
|
386 |
-
cross_attention_dim=cross_attention_dim,
|
387 |
-
num_content_tokens=self.num_content_tokens,
|
388 |
-
num_style_tokens=self.num_style_tokens,
|
389 |
-
skip=True,
|
390 |
-
)
|
391 |
-
|
392 |
-
attn_procs[name].to(self.device, dtype=torch.float16)
|
393 |
-
unet.set_attn_processor(attn_procs)
|
394 |
-
if hasattr(self.pipe, "controlnet"):
|
395 |
-
if self.controlnet_adapter is False:
|
396 |
-
if isinstance(self.pipe.controlnet, MultiControlNetModel):
|
397 |
-
for controlnet in self.pipe.controlnet.nets:
|
398 |
-
controlnet.set_attn_processor(CNAttnProcessor(
|
399 |
-
num_tokens=self.num_content_tokens + self.num_style_tokens))
|
400 |
-
else:
|
401 |
-
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(
|
402 |
-
num_tokens=self.num_content_tokens + self.num_style_tokens))
|
403 |
-
|
404 |
-
else:
|
405 |
-
controlnet_attn_procs = {}
|
406 |
-
controlnet_style_target_blocks = self.controlnet_target_style_blocks
|
407 |
-
controlnet_content_target_blocks = self.controlnet_target_content_blocks
|
408 |
-
for name in self.pipe.controlnet.attn_processors.keys():
|
409 |
-
# print(name)
|
410 |
-
cross_attention_dim = None if name.endswith(
|
411 |
-
"attn1.processor") else self.pipe.controlnet.config.cross_attention_dim
|
412 |
-
if name.startswith("mid_block"):
|
413 |
-
hidden_size = self.pipe.controlnet.config.block_out_channels[-1]
|
414 |
-
elif name.startswith("up_blocks"):
|
415 |
-
block_id = int(name[len("up_blocks.")])
|
416 |
-
hidden_size = list(reversed(self.pipe.controlnet.config.block_out_channels))[block_id]
|
417 |
-
elif name.startswith("down_blocks"):
|
418 |
-
block_id = int(name[len("down_blocks.")])
|
419 |
-
hidden_size = self.pipe.controlnet.config.block_out_channels[block_id]
|
420 |
-
if cross_attention_dim is None:
|
421 |
-
# layername_id += 1
|
422 |
-
controlnet_attn_procs[name] = AttnProcessor()
|
423 |
-
|
424 |
-
else:
|
425 |
-
# layername_id += 1
|
426 |
-
selected = False
|
427 |
-
for block_name in controlnet_style_target_blocks:
|
428 |
-
if block_name in name:
|
429 |
-
selected = True
|
430 |
-
# print(name)
|
431 |
-
controlnet_attn_procs[name] = IP_CS_AttnProcessor(
|
432 |
-
hidden_size=hidden_size,
|
433 |
-
cross_attention_dim=cross_attention_dim,
|
434 |
-
style_scale=1.0,
|
435 |
-
style=True,
|
436 |
-
num_content_tokens=self.num_content_tokens,
|
437 |
-
num_style_tokens=self.num_style_tokens,
|
438 |
-
)
|
439 |
-
|
440 |
-
for block_name in controlnet_content_target_blocks:
|
441 |
-
if block_name in name:
|
442 |
-
if selected is False:
|
443 |
-
controlnet_attn_procs[name] = IP_CS_AttnProcessor(
|
444 |
-
hidden_size=hidden_size,
|
445 |
-
cross_attention_dim=cross_attention_dim,
|
446 |
-
content_scale=1.0,
|
447 |
-
content=True,
|
448 |
-
num_content_tokens=self.num_content_tokens,
|
449 |
-
num_style_tokens=self.num_style_tokens,
|
450 |
-
)
|
451 |
-
|
452 |
-
selected = True
|
453 |
-
elif selected is True:
|
454 |
-
controlnet_attn_procs[name].set_content_ipa(content_scale=1.0)
|
455 |
-
|
456 |
-
# if args.content_image_encoder_type !='dinov2':
|
457 |
-
# weights = {
|
458 |
-
# "to_k_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_k_ip.weight"],
|
459 |
-
# "to_v_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_v_ip.weight"],
|
460 |
-
# }
|
461 |
-
# attn_procs[name].load_state_dict(weights)
|
462 |
-
if selected is False:
|
463 |
-
controlnet_attn_procs[name] = IP_CS_AttnProcessor(
|
464 |
-
hidden_size=hidden_size,
|
465 |
-
cross_attention_dim=cross_attention_dim,
|
466 |
-
num_content_tokens=self.num_content_tokens,
|
467 |
-
num_style_tokens=self.num_style_tokens,
|
468 |
-
skip=True,
|
469 |
-
)
|
470 |
-
controlnet_attn_procs[name].to(self.device, dtype=torch.float16)
|
471 |
-
# layer_name = name.split(".processor")[0]
|
472 |
-
# # print(state_dict["ip_adapter"].keys())
|
473 |
-
# weights = {
|
474 |
-
# "to_k_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_k_ip.weight"],
|
475 |
-
# "to_v_ip.weight": state_dict["ip_adapter"][str(layername_id) + ".to_v_ip.weight"],
|
476 |
-
# }
|
477 |
-
# attn_procs[name].load_state_dict(weights)
|
478 |
-
self.pipe.controlnet.set_attn_processor(controlnet_attn_procs)
|
479 |
-
|
480 |
-
def load_ip_adapter(self):
|
481 |
-
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
482 |
-
state_dict = {"content_image_proj": {}, "style_image_proj": {}, "ip_adapter": {}}
|
483 |
-
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
484 |
-
for key in f.keys():
|
485 |
-
if key.startswith("content_image_proj."):
|
486 |
-
state_dict["content_image_proj"][key.replace("content_image_proj.", "")] = f.get_tensor(key)
|
487 |
-
elif key.startswith("style_image_proj."):
|
488 |
-
state_dict["style_image_proj"][key.replace("style_image_proj.", "")] = f.get_tensor(key)
|
489 |
-
elif key.startswith("ip_adapter."):
|
490 |
-
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
491 |
-
else:
|
492 |
-
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
493 |
-
self.content_image_proj_model.load_state_dict(state_dict["content_image_proj"])
|
494 |
-
self.style_image_proj_model.load_state_dict(state_dict["style_image_proj"])
|
495 |
-
|
496 |
-
if 'conv_in_unet_sd' in state_dict.keys():
|
497 |
-
self.pipe.unet.conv_in.load_state_dict(state_dict["conv_in_unet_sd"], strict=True)
|
498 |
-
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
|
499 |
-
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
|
500 |
-
|
501 |
-
if self.controlnet_adapter is True:
|
502 |
-
print('loading controlnet_adapter')
|
503 |
-
self.pipe.controlnet.load_state_dict(state_dict["controlnet_adapter_modules"], strict=False)
|
504 |
-
|
505 |
-
@torch.inference_mode()
|
506 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_prompt_embeds=None,
|
507 |
-
content_or_style_=''):
|
508 |
-
# if pil_image is not None:
|
509 |
-
# if isinstance(pil_image, Image.Image):
|
510 |
-
# pil_image = [pil_image]
|
511 |
-
# clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
512 |
-
# clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
513 |
-
# else:
|
514 |
-
# clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
515 |
-
|
516 |
-
# if content_prompt_embeds is not None:
|
517 |
-
# clip_image_embeds = clip_image_embeds - content_prompt_embeds
|
518 |
-
|
519 |
-
if content_or_style_ == 'content':
|
520 |
-
if pil_image is not None:
|
521 |
-
if isinstance(pil_image, Image.Image):
|
522 |
-
pil_image = [pil_image]
|
523 |
-
if self.content_image_proj_model is not None:
|
524 |
-
clip_image = self.content_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
525 |
-
clip_image_embeds = self.content_image_encoder(
|
526 |
-
clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
527 |
-
else:
|
528 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
529 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
530 |
-
else:
|
531 |
-
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
532 |
-
|
533 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
534 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
535 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
536 |
-
if content_or_style_ == 'style':
|
537 |
-
if pil_image is not None:
|
538 |
-
if self.use_CSD is not None:
|
539 |
-
clip_image = self.style_preprocess(pil_image).unsqueeze(0).to(self.device, dtype=torch.float32)
|
540 |
-
clip_image_embeds = self.style_image_encoder(clip_image)
|
541 |
-
else:
|
542 |
-
if isinstance(pil_image, Image.Image):
|
543 |
-
pil_image = [pil_image]
|
544 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
545 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
546 |
-
|
547 |
-
|
548 |
-
else:
|
549 |
-
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
550 |
-
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds)
|
551 |
-
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds))
|
552 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
553 |
-
|
554 |
-
def set_scale(self, content_scale, style_scale):
|
555 |
-
for attn_processor in self.pipe.unet.attn_processors.values():
|
556 |
-
if isinstance(attn_processor, IP_CS_AttnProcessor):
|
557 |
-
if attn_processor.content is True:
|
558 |
-
attn_processor.content_scale = content_scale
|
559 |
-
|
560 |
-
if attn_processor.style is True:
|
561 |
-
attn_processor.style_scale = style_scale
|
562 |
-
# print('style_scale:',style_scale)
|
563 |
-
if self.controlnet_adapter is not None:
|
564 |
-
for attn_processor in self.pipe.controlnet.attn_processors.values():
|
565 |
-
|
566 |
-
if isinstance(attn_processor, IP_CS_AttnProcessor):
|
567 |
-
if attn_processor.content is True:
|
568 |
-
attn_processor.content_scale = content_scale
|
569 |
-
# print(content_scale)
|
570 |
-
|
571 |
-
if attn_processor.style is True:
|
572 |
-
attn_processor.style_scale = style_scale
|
573 |
-
|
574 |
-
def generate(
|
575 |
-
self,
|
576 |
-
pil_content_image=None,
|
577 |
-
pil_style_image=None,
|
578 |
-
clip_content_image_embeds=None,
|
579 |
-
clip_style_image_embeds=None,
|
580 |
-
prompt=None,
|
581 |
-
negative_prompt=None,
|
582 |
-
content_scale=1.0,
|
583 |
-
style_scale=1.0,
|
584 |
-
num_samples=4,
|
585 |
-
seed=None,
|
586 |
-
guidance_scale=7.5,
|
587 |
-
num_inference_steps=30,
|
588 |
-
neg_content_emb=None,
|
589 |
-
**kwargs,
|
590 |
-
):
|
591 |
-
self.set_scale(content_scale, style_scale)
|
592 |
-
|
593 |
-
if pil_content_image is not None:
|
594 |
-
num_prompts = 1 if isinstance(pil_content_image, Image.Image) else len(pil_content_image)
|
595 |
-
else:
|
596 |
-
num_prompts = clip_content_image_embeds.size(0)
|
597 |
-
|
598 |
-
if prompt is None:
|
599 |
-
prompt = "best quality, high quality"
|
600 |
-
if negative_prompt is None:
|
601 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
602 |
-
|
603 |
-
if not isinstance(prompt, List):
|
604 |
-
prompt = [prompt] * num_prompts
|
605 |
-
if not isinstance(negative_prompt, List):
|
606 |
-
negative_prompt = [negative_prompt] * num_prompts
|
607 |
-
|
608 |
-
content_image_prompt_embeds, uncond_content_image_prompt_embeds = self.get_image_embeds(
|
609 |
-
pil_image=pil_content_image, clip_image_embeds=clip_content_image_embeds
|
610 |
-
)
|
611 |
-
style_image_prompt_embeds, uncond_style_image_prompt_embeds = self.get_image_embeds(
|
612 |
-
pil_image=pil_style_image, clip_image_embeds=clip_style_image_embeds
|
613 |
-
)
|
614 |
-
|
615 |
-
bs_embed, seq_len, _ = content_image_prompt_embeds.shape
|
616 |
-
content_image_prompt_embeds = content_image_prompt_embeds.repeat(1, num_samples, 1)
|
617 |
-
content_image_prompt_embeds = content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
618 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.repeat(1, num_samples, 1)
|
619 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.view(bs_embed * num_samples, seq_len,
|
620 |
-
-1)
|
621 |
-
|
622 |
-
bs_style_embed, seq_style_len, _ = content_image_prompt_embeds.shape
|
623 |
-
style_image_prompt_embeds = style_image_prompt_embeds.repeat(1, num_samples, 1)
|
624 |
-
style_image_prompt_embeds = style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, -1)
|
625 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.repeat(1, num_samples, 1)
|
626 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len,
|
627 |
-
-1)
|
628 |
-
|
629 |
-
with torch.inference_mode():
|
630 |
-
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
|
631 |
-
prompt,
|
632 |
-
device=self.device,
|
633 |
-
num_images_per_prompt=num_samples,
|
634 |
-
do_classifier_free_guidance=True,
|
635 |
-
negative_prompt=negative_prompt,
|
636 |
-
)
|
637 |
-
prompt_embeds = torch.cat([prompt_embeds_, content_image_prompt_embeds, style_image_prompt_embeds], dim=1)
|
638 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds_,
|
639 |
-
uncond_content_image_prompt_embeds, uncond_style_image_prompt_embeds],
|
640 |
-
dim=1)
|
641 |
-
|
642 |
-
generator = get_generator(seed, self.device)
|
643 |
-
|
644 |
-
images = self.pipe(
|
645 |
-
prompt_embeds=prompt_embeds,
|
646 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
647 |
-
guidance_scale=guidance_scale,
|
648 |
-
num_inference_steps=num_inference_steps,
|
649 |
-
generator=generator,
|
650 |
-
**kwargs,
|
651 |
-
).images
|
652 |
-
|
653 |
-
return images
|
654 |
-
|
655 |
-
|
656 |
-
class IPAdapterXL_CS(IPAdapter_CS):
|
657 |
-
"""SDXL"""
|
658 |
-
|
659 |
-
def generate(
|
660 |
-
self,
|
661 |
-
pil_content_image,
|
662 |
-
pil_style_image,
|
663 |
-
prompt=None,
|
664 |
-
negative_prompt=None,
|
665 |
-
content_scale=1.0,
|
666 |
-
style_scale=1.0,
|
667 |
-
num_samples=4,
|
668 |
-
seed=None,
|
669 |
-
content_image_embeds=None,
|
670 |
-
style_image_embeds=None,
|
671 |
-
num_inference_steps=30,
|
672 |
-
neg_content_emb=None,
|
673 |
-
neg_content_prompt=None,
|
674 |
-
neg_content_scale=1.0,
|
675 |
-
**kwargs,
|
676 |
-
):
|
677 |
-
self.set_scale(content_scale, style_scale)
|
678 |
-
|
679 |
-
num_prompts = 1 if isinstance(pil_content_image, Image.Image) else len(pil_content_image)
|
680 |
-
|
681 |
-
if prompt is None:
|
682 |
-
prompt = "best quality, high quality"
|
683 |
-
if negative_prompt is None:
|
684 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
685 |
-
|
686 |
-
if not isinstance(prompt, List):
|
687 |
-
prompt = [prompt] * num_prompts
|
688 |
-
if not isinstance(negative_prompt, List):
|
689 |
-
negative_prompt = [negative_prompt] * num_prompts
|
690 |
-
|
691 |
-
content_image_prompt_embeds, uncond_content_image_prompt_embeds = self.get_image_embeds(pil_content_image,
|
692 |
-
content_image_embeds,
|
693 |
-
content_or_style_='content')
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
style_image_prompt_embeds, uncond_style_image_prompt_embeds = self.get_image_embeds(pil_style_image,
|
698 |
-
style_image_embeds,
|
699 |
-
content_or_style_='style')
|
700 |
-
|
701 |
-
bs_embed, seq_len, _ = content_image_prompt_embeds.shape
|
702 |
-
|
703 |
-
content_image_prompt_embeds = content_image_prompt_embeds.repeat(1, num_samples, 1)
|
704 |
-
content_image_prompt_embeds = content_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
705 |
-
|
706 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.repeat(1, num_samples, 1)
|
707 |
-
uncond_content_image_prompt_embeds = uncond_content_image_prompt_embeds.view(bs_embed * num_samples, seq_len,
|
708 |
-
-1)
|
709 |
-
bs_style_embed, seq_style_len, _ = style_image_prompt_embeds.shape
|
710 |
-
style_image_prompt_embeds = style_image_prompt_embeds.repeat(1, num_samples, 1)
|
711 |
-
style_image_prompt_embeds = style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len, -1)
|
712 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.repeat(1, num_samples, 1)
|
713 |
-
uncond_style_image_prompt_embeds = uncond_style_image_prompt_embeds.view(bs_embed * num_samples, seq_style_len,
|
714 |
-
-1)
|
715 |
-
|
716 |
-
with torch.inference_mode():
|
717 |
-
(
|
718 |
-
prompt_embeds,
|
719 |
-
negative_prompt_embeds,
|
720 |
-
pooled_prompt_embeds,
|
721 |
-
negative_pooled_prompt_embeds,
|
722 |
-
) = self.pipe.encode_prompt(
|
723 |
-
prompt,
|
724 |
-
num_images_per_prompt=num_samples,
|
725 |
-
do_classifier_free_guidance=True,
|
726 |
-
negative_prompt=negative_prompt,
|
727 |
-
)
|
728 |
-
prompt_embeds = torch.cat([prompt_embeds, content_image_prompt_embeds, style_image_prompt_embeds], dim=1)
|
729 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds,
|
730 |
-
uncond_content_image_prompt_embeds, uncond_style_image_prompt_embeds],
|
731 |
-
dim=1)
|
732 |
-
|
733 |
-
self.generator = get_generator(seed, self.device)
|
734 |
-
|
735 |
-
images = self.pipe(
|
736 |
-
prompt_embeds=prompt_embeds,
|
737 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
738 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
739 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
740 |
-
num_inference_steps=num_inference_steps,
|
741 |
-
generator=self.generator,
|
742 |
-
**kwargs,
|
743 |
-
).images
|
744 |
-
return images
|
745 |
-
|
746 |
-
|
747 |
-
class CSGO(IPAdapterXL_CS):
|
748 |
-
"""SDXL"""
|
749 |
-
|
750 |
-
def init_proj(self, num_tokens, content_or_style_='content', model_resampler=False):
|
751 |
-
if content_or_style_ == 'content':
|
752 |
-
if model_resampler:
|
753 |
-
image_proj_model = Resampler(
|
754 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
755 |
-
depth=4,
|
756 |
-
dim_head=64,
|
757 |
-
heads=12,
|
758 |
-
num_queries=num_tokens,
|
759 |
-
embedding_dim=self.content_image_encoder.config.hidden_size,
|
760 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
761 |
-
ff_mult=4,
|
762 |
-
).to(self.device, dtype=torch.float16)
|
763 |
-
else:
|
764 |
-
image_proj_model = ImageProjModel(
|
765 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
766 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
767 |
-
clip_extra_context_tokens=num_tokens,
|
768 |
-
).to(self.device, dtype=torch.float16)
|
769 |
-
if content_or_style_ == 'style':
|
770 |
-
if model_resampler:
|
771 |
-
image_proj_model = Resampler(
|
772 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
773 |
-
depth=4,
|
774 |
-
dim_head=64,
|
775 |
-
heads=12,
|
776 |
-
num_queries=num_tokens,
|
777 |
-
embedding_dim=self.content_image_encoder.config.hidden_size,
|
778 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
779 |
-
ff_mult=4,
|
780 |
-
).to(self.device, dtype=torch.float16)
|
781 |
-
else:
|
782 |
-
image_proj_model = ImageProjModel(
|
783 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
784 |
-
clip_embeddings_dim=self.image_encoder.config.projection_dim,
|
785 |
-
clip_extra_context_tokens=num_tokens,
|
786 |
-
).to(self.device, dtype=torch.float16)
|
787 |
-
return image_proj_model
|
788 |
-
|
789 |
-
@torch.inference_mode()
|
790 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None, content_or_style_=''):
|
791 |
-
if isinstance(pil_image, Image.Image):
|
792 |
-
pil_image = [pil_image]
|
793 |
-
if content_or_style_ == 'style':
|
794 |
-
|
795 |
-
if self.style_model_resampler:
|
796 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
797 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16),
|
798 |
-
output_hidden_states=True).hidden_states[-2]
|
799 |
-
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds)
|
800 |
-
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds))
|
801 |
-
else:
|
802 |
-
|
803 |
-
|
804 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
805 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
806 |
-
image_prompt_embeds = self.style_image_proj_model(clip_image_embeds)
|
807 |
-
uncond_image_prompt_embeds = self.style_image_proj_model(torch.zeros_like(clip_image_embeds))
|
808 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
809 |
-
|
810 |
-
|
811 |
-
else:
|
812 |
-
|
813 |
-
if self.content_image_encoder_path is not None:
|
814 |
-
clip_image = self.content_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
815 |
-
outputs = self.content_image_encoder(clip_image.to(self.device, dtype=torch.float16),
|
816 |
-
output_hidden_states=True)
|
817 |
-
clip_image_embeds = outputs.last_hidden_state
|
818 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
819 |
-
|
820 |
-
# uncond_clip_image_embeds = self.image_encoder(
|
821 |
-
# torch.zeros_like(clip_image), output_hidden_states=True
|
822 |
-
# ).last_hidden_state
|
823 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
824 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
825 |
-
|
826 |
-
else:
|
827 |
-
if self.content_model_resampler:
|
828 |
-
|
829 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
830 |
-
|
831 |
-
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
832 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
833 |
-
# clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
|
834 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
835 |
-
# uncond_clip_image_embeds = self.image_encoder(
|
836 |
-
# torch.zeros_like(clip_image), output_hidden_states=True
|
837 |
-
# ).hidden_states[-2]
|
838 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
839 |
-
else:
|
840 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
841 |
-
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
|
842 |
-
image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
843 |
-
uncond_image_prompt_embeds = self.content_image_proj_model(torch.zeros_like(clip_image_embeds))
|
844 |
-
|
845 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
846 |
-
|
847 |
-
# # clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
848 |
-
# clip_image = clip_image.to(self.device, dtype=torch.float16)
|
849 |
-
# clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
850 |
-
# image_prompt_embeds = self.content_image_proj_model(clip_image_embeds)
|
851 |
-
# uncond_clip_image_embeds = self.image_encoder(
|
852 |
-
# torch.zeros_like(clip_image), output_hidden_states=True
|
853 |
-
# ).hidden_states[-2]
|
854 |
-
# uncond_image_prompt_embeds = self.content_image_proj_model(uncond_clip_image_embeds)
|
855 |
-
# return image_prompt_embeds, uncond_image_prompt_embeds
|
856 |
-
|
857 |
-
|
858 |
-
class IPAdapterXL(IPAdapter):
|
859 |
-
"""SDXL"""
|
860 |
-
|
861 |
-
def generate(
|
862 |
-
self,
|
863 |
-
pil_image,
|
864 |
-
prompt=None,
|
865 |
-
negative_prompt=None,
|
866 |
-
scale=1.0,
|
867 |
-
num_samples=4,
|
868 |
-
seed=None,
|
869 |
-
num_inference_steps=30,
|
870 |
-
neg_content_emb=None,
|
871 |
-
neg_content_prompt=None,
|
872 |
-
neg_content_scale=1.0,
|
873 |
-
**kwargs,
|
874 |
-
):
|
875 |
-
self.set_scale(scale)
|
876 |
-
|
877 |
-
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
878 |
-
|
879 |
-
if prompt is None:
|
880 |
-
prompt = "best quality, high quality"
|
881 |
-
if negative_prompt is None:
|
882 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
883 |
-
|
884 |
-
if not isinstance(prompt, List):
|
885 |
-
prompt = [prompt] * num_prompts
|
886 |
-
if not isinstance(negative_prompt, List):
|
887 |
-
negative_prompt = [negative_prompt] * num_prompts
|
888 |
-
|
889 |
-
if neg_content_emb is None:
|
890 |
-
if neg_content_prompt is not None:
|
891 |
-
with torch.inference_mode():
|
892 |
-
(
|
893 |
-
prompt_embeds_, # torch.Size([1, 77, 2048])
|
894 |
-
negative_prompt_embeds_,
|
895 |
-
pooled_prompt_embeds_, # torch.Size([1, 1280])
|
896 |
-
negative_pooled_prompt_embeds_,
|
897 |
-
) = self.pipe.encode_prompt(
|
898 |
-
neg_content_prompt,
|
899 |
-
num_images_per_prompt=num_samples,
|
900 |
-
do_classifier_free_guidance=True,
|
901 |
-
negative_prompt=negative_prompt,
|
902 |
-
)
|
903 |
-
pooled_prompt_embeds_ *= neg_content_scale
|
904 |
-
else:
|
905 |
-
pooled_prompt_embeds_ = neg_content_emb
|
906 |
-
else:
|
907 |
-
pooled_prompt_embeds_ = None
|
908 |
-
|
909 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image,
|
910 |
-
content_prompt_embeds=pooled_prompt_embeds_)
|
911 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
912 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
913 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
914 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
915 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
916 |
-
|
917 |
-
with torch.inference_mode():
|
918 |
-
(
|
919 |
-
prompt_embeds,
|
920 |
-
negative_prompt_embeds,
|
921 |
-
pooled_prompt_embeds,
|
922 |
-
negative_pooled_prompt_embeds,
|
923 |
-
) = self.pipe.encode_prompt(
|
924 |
-
prompt,
|
925 |
-
num_images_per_prompt=num_samples,
|
926 |
-
do_classifier_free_guidance=True,
|
927 |
-
negative_prompt=negative_prompt,
|
928 |
-
)
|
929 |
-
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
930 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
931 |
-
|
932 |
-
self.generator = get_generator(seed, self.device)
|
933 |
-
|
934 |
-
images = self.pipe(
|
935 |
-
prompt_embeds=prompt_embeds,
|
936 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
937 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
938 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
939 |
-
num_inference_steps=num_inference_steps,
|
940 |
-
generator=self.generator,
|
941 |
-
**kwargs,
|
942 |
-
).images
|
943 |
-
|
944 |
-
return images
|
945 |
-
|
946 |
-
|
947 |
-
class IPAdapterPlus(IPAdapter):
|
948 |
-
"""IP-Adapter with fine-grained features"""
|
949 |
-
|
950 |
-
def init_proj(self):
|
951 |
-
image_proj_model = Resampler(
|
952 |
-
dim=self.pipe.unet.config.cross_attention_dim,
|
953 |
-
depth=4,
|
954 |
-
dim_head=64,
|
955 |
-
heads=12,
|
956 |
-
num_queries=self.num_tokens,
|
957 |
-
embedding_dim=self.image_encoder.config.hidden_size,
|
958 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
959 |
-
ff_mult=4,
|
960 |
-
).to(self.device, dtype=torch.float16)
|
961 |
-
return image_proj_model
|
962 |
-
|
963 |
-
@torch.inference_mode()
|
964 |
-
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
965 |
-
if isinstance(pil_image, Image.Image):
|
966 |
-
pil_image = [pil_image]
|
967 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
968 |
-
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
969 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
970 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
971 |
-
uncond_clip_image_embeds = self.image_encoder(
|
972 |
-
torch.zeros_like(clip_image), output_hidden_states=True
|
973 |
-
).hidden_states[-2]
|
974 |
-
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
975 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
976 |
-
|
977 |
-
|
978 |
-
class IPAdapterFull(IPAdapterPlus):
|
979 |
-
"""IP-Adapter with full features"""
|
980 |
-
|
981 |
-
def init_proj(self):
|
982 |
-
image_proj_model = MLPProjModel(
|
983 |
-
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
984 |
-
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
985 |
-
).to(self.device, dtype=torch.float16)
|
986 |
-
return image_proj_model
|
987 |
-
|
988 |
-
|
989 |
-
class IPAdapterPlusXL(IPAdapter):
|
990 |
-
"""SDXL"""
|
991 |
-
|
992 |
-
def init_proj(self):
|
993 |
-
image_proj_model = Resampler(
|
994 |
-
dim=1280,
|
995 |
-
depth=4,
|
996 |
-
dim_head=64,
|
997 |
-
heads=20,
|
998 |
-
num_queries=self.num_tokens,
|
999 |
-
embedding_dim=self.image_encoder.config.hidden_size,
|
1000 |
-
output_dim=self.pipe.unet.config.cross_attention_dim,
|
1001 |
-
ff_mult=4,
|
1002 |
-
).to(self.device, dtype=torch.float16)
|
1003 |
-
return image_proj_model
|
1004 |
-
|
1005 |
-
@torch.inference_mode()
|
1006 |
-
def get_image_embeds(self, pil_image):
|
1007 |
-
if isinstance(pil_image, Image.Image):
|
1008 |
-
pil_image = [pil_image]
|
1009 |
-
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
1010 |
-
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
1011 |
-
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
1012 |
-
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
1013 |
-
uncond_clip_image_embeds = self.image_encoder(
|
1014 |
-
torch.zeros_like(clip_image), output_hidden_states=True
|
1015 |
-
).hidden_states[-2]
|
1016 |
-
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
1017 |
-
return image_prompt_embeds, uncond_image_prompt_embeds
|
1018 |
-
|
1019 |
-
def generate(
|
1020 |
-
self,
|
1021 |
-
pil_image,
|
1022 |
-
prompt=None,
|
1023 |
-
negative_prompt=None,
|
1024 |
-
scale=1.0,
|
1025 |
-
num_samples=4,
|
1026 |
-
seed=None,
|
1027 |
-
num_inference_steps=30,
|
1028 |
-
**kwargs,
|
1029 |
-
):
|
1030 |
-
self.set_scale(scale)
|
1031 |
-
|
1032 |
-
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
|
1033 |
-
|
1034 |
-
if prompt is None:
|
1035 |
-
prompt = "best quality, high quality"
|
1036 |
-
if negative_prompt is None:
|
1037 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
1038 |
-
|
1039 |
-
if not isinstance(prompt, List):
|
1040 |
-
prompt = [prompt] * num_prompts
|
1041 |
-
if not isinstance(negative_prompt, List):
|
1042 |
-
negative_prompt = [negative_prompt] * num_prompts
|
1043 |
-
|
1044 |
-
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
|
1045 |
-
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
1046 |
-
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
1047 |
-
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
1048 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
1049 |
-
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
1050 |
-
|
1051 |
-
with torch.inference_mode():
|
1052 |
-
(
|
1053 |
-
prompt_embeds,
|
1054 |
-
negative_prompt_embeds,
|
1055 |
-
pooled_prompt_embeds,
|
1056 |
-
negative_pooled_prompt_embeds,
|
1057 |
-
) = self.pipe.encode_prompt(
|
1058 |
-
prompt,
|
1059 |
-
num_images_per_prompt=num_samples,
|
1060 |
-
do_classifier_free_guidance=True,
|
1061 |
-
negative_prompt=negative_prompt,
|
1062 |
-
)
|
1063 |
-
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
1064 |
-
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
1065 |
-
|
1066 |
-
generator = get_generator(seed, self.device)
|
1067 |
-
|
1068 |
-
images = self.pipe(
|
1069 |
-
prompt_embeds=prompt_embeds,
|
1070 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
1071 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
1072 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1073 |
-
num_inference_steps=num_inference_steps,
|
1074 |
-
generator=generator,
|
1075 |
-
**kwargs,
|
1076 |
-
).images
|
1077 |
-
|
1078 |
-
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter_resampler.py
DELETED
@@ -1,158 +0,0 @@
|
|
1 |
-
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
-
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
3 |
-
|
4 |
-
import math
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
from einops import rearrange
|
9 |
-
from einops.layers.torch import Rearrange
|
10 |
-
|
11 |
-
|
12 |
-
# FFN
|
13 |
-
def FeedForward(dim, mult=4):
|
14 |
-
inner_dim = int(dim * mult)
|
15 |
-
return nn.Sequential(
|
16 |
-
nn.LayerNorm(dim),
|
17 |
-
nn.Linear(dim, inner_dim, bias=False),
|
18 |
-
nn.GELU(),
|
19 |
-
nn.Linear(inner_dim, dim, bias=False),
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
def reshape_tensor(x, heads):
|
24 |
-
bs, length, width = x.shape
|
25 |
-
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
26 |
-
x = x.view(bs, length, heads, -1)
|
27 |
-
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
28 |
-
x = x.transpose(1, 2)
|
29 |
-
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
30 |
-
x = x.reshape(bs, heads, length, -1)
|
31 |
-
return x
|
32 |
-
|
33 |
-
|
34 |
-
class PerceiverAttention(nn.Module):
|
35 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
36 |
-
super().__init__()
|
37 |
-
self.scale = dim_head**-0.5
|
38 |
-
self.dim_head = dim_head
|
39 |
-
self.heads = heads
|
40 |
-
inner_dim = dim_head * heads
|
41 |
-
|
42 |
-
self.norm1 = nn.LayerNorm(dim)
|
43 |
-
self.norm2 = nn.LayerNorm(dim)
|
44 |
-
|
45 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
47 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
48 |
-
|
49 |
-
def forward(self, x, latents):
|
50 |
-
"""
|
51 |
-
Args:
|
52 |
-
x (torch.Tensor): image features
|
53 |
-
shape (b, n1, D)
|
54 |
-
latent (torch.Tensor): latent features
|
55 |
-
shape (b, n2, D)
|
56 |
-
"""
|
57 |
-
x = self.norm1(x)
|
58 |
-
latents = self.norm2(latents)
|
59 |
-
|
60 |
-
b, l, _ = latents.shape
|
61 |
-
|
62 |
-
q = self.to_q(latents)
|
63 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
64 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
65 |
-
|
66 |
-
q = reshape_tensor(q, self.heads)
|
67 |
-
k = reshape_tensor(k, self.heads)
|
68 |
-
v = reshape_tensor(v, self.heads)
|
69 |
-
|
70 |
-
# attention
|
71 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
72 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
73 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
74 |
-
out = weight @ v
|
75 |
-
|
76 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
77 |
-
|
78 |
-
return self.to_out(out)
|
79 |
-
|
80 |
-
|
81 |
-
class Resampler(nn.Module):
|
82 |
-
def __init__(
|
83 |
-
self,
|
84 |
-
dim=1024,
|
85 |
-
depth=8,
|
86 |
-
dim_head=64,
|
87 |
-
heads=16,
|
88 |
-
num_queries=8,
|
89 |
-
embedding_dim=768,
|
90 |
-
output_dim=1024,
|
91 |
-
ff_mult=4,
|
92 |
-
max_seq_len: int = 257, # CLIP tokens + CLS token
|
93 |
-
apply_pos_emb: bool = False,
|
94 |
-
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
95 |
-
):
|
96 |
-
super().__init__()
|
97 |
-
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
98 |
-
|
99 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
100 |
-
|
101 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
102 |
-
|
103 |
-
self.proj_out = nn.Linear(dim, output_dim)
|
104 |
-
self.norm_out = nn.LayerNorm(output_dim)
|
105 |
-
|
106 |
-
self.to_latents_from_mean_pooled_seq = (
|
107 |
-
nn.Sequential(
|
108 |
-
nn.LayerNorm(dim),
|
109 |
-
nn.Linear(dim, dim * num_latents_mean_pooled),
|
110 |
-
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
111 |
-
)
|
112 |
-
if num_latents_mean_pooled > 0
|
113 |
-
else None
|
114 |
-
)
|
115 |
-
|
116 |
-
self.layers = nn.ModuleList([])
|
117 |
-
for _ in range(depth):
|
118 |
-
self.layers.append(
|
119 |
-
nn.ModuleList(
|
120 |
-
[
|
121 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
122 |
-
FeedForward(dim=dim, mult=ff_mult),
|
123 |
-
]
|
124 |
-
)
|
125 |
-
)
|
126 |
-
|
127 |
-
def forward(self, x):
|
128 |
-
if self.pos_emb is not None:
|
129 |
-
n, device = x.shape[1], x.device
|
130 |
-
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
131 |
-
x = x + pos_emb
|
132 |
-
|
133 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
134 |
-
|
135 |
-
x = self.proj_in(x)
|
136 |
-
|
137 |
-
if self.to_latents_from_mean_pooled_seq:
|
138 |
-
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
|
139 |
-
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
140 |
-
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
141 |
-
|
142 |
-
for attn, ff in self.layers:
|
143 |
-
latents = attn(x, latents) + latents
|
144 |
-
latents = ff(latents) + latents
|
145 |
-
|
146 |
-
latents = self.proj_out(latents)
|
147 |
-
return self.norm_out(latents)
|
148 |
-
|
149 |
-
|
150 |
-
def masked_mean(t, *, dim, mask=None):
|
151 |
-
if mask is None:
|
152 |
-
return t.mean(dim=dim)
|
153 |
-
|
154 |
-
denom = mask.sum(dim=dim, keepdim=True)
|
155 |
-
mask = rearrange(mask, "b n -> b n 1")
|
156 |
-
masked_t = t.masked_fill(~mask, 0.0)
|
157 |
-
|
158 |
-
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/ip_adapter_utils.py
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
-
BLOCKS = {
|
7 |
-
'content': ['down_blocks'],
|
8 |
-
'style': ["up_blocks"],
|
9 |
-
|
10 |
-
}
|
11 |
-
|
12 |
-
controlnet_BLOCKS = {
|
13 |
-
'content': [],
|
14 |
-
'style': ["down_blocks"],
|
15 |
-
}
|
16 |
-
|
17 |
-
|
18 |
-
def resize_width_height(width, height, min_short_side=512, max_long_side=1024):
|
19 |
-
|
20 |
-
if width < height:
|
21 |
-
|
22 |
-
if width < min_short_side:
|
23 |
-
scale_factor = min_short_side / width
|
24 |
-
new_width = min_short_side
|
25 |
-
new_height = int(height * scale_factor)
|
26 |
-
else:
|
27 |
-
new_width, new_height = width, height
|
28 |
-
else:
|
29 |
-
|
30 |
-
if height < min_short_side:
|
31 |
-
scale_factor = min_short_side / height
|
32 |
-
new_width = int(width * scale_factor)
|
33 |
-
new_height = min_short_side
|
34 |
-
else:
|
35 |
-
new_width, new_height = width, height
|
36 |
-
|
37 |
-
if max(new_width, new_height) > max_long_side:
|
38 |
-
scale_factor = max_long_side / max(new_width, new_height)
|
39 |
-
new_width = int(new_width * scale_factor)
|
40 |
-
new_height = int(new_height * scale_factor)
|
41 |
-
return new_width, new_height
|
42 |
-
|
43 |
-
def resize_content(content_image):
|
44 |
-
max_long_side = 1024
|
45 |
-
min_short_side = 1024
|
46 |
-
|
47 |
-
new_width, new_height = resize_width_height(content_image.size[0], content_image.size[1],
|
48 |
-
min_short_side=min_short_side, max_long_side=max_long_side)
|
49 |
-
height = new_height // 16 * 16
|
50 |
-
width = new_width // 16 * 16
|
51 |
-
content_image = content_image.resize((width, height))
|
52 |
-
|
53 |
-
return width,height,content_image
|
54 |
-
|
55 |
-
attn_maps = {}
|
56 |
-
def hook_fn(name):
|
57 |
-
def forward_hook(module, input, output):
|
58 |
-
if hasattr(module.processor, "attn_map"):
|
59 |
-
attn_maps[name] = module.processor.attn_map
|
60 |
-
del module.processor.attn_map
|
61 |
-
|
62 |
-
return forward_hook
|
63 |
-
|
64 |
-
def register_cross_attention_hook(unet):
|
65 |
-
for name, module in unet.named_modules():
|
66 |
-
if name.split('.')[-1].startswith('attn2'):
|
67 |
-
module.register_forward_hook(hook_fn(name))
|
68 |
-
|
69 |
-
return unet
|
70 |
-
|
71 |
-
def upscale(attn_map, target_size):
|
72 |
-
attn_map = torch.mean(attn_map, dim=0)
|
73 |
-
attn_map = attn_map.permute(1,0)
|
74 |
-
temp_size = None
|
75 |
-
|
76 |
-
for i in range(0,5):
|
77 |
-
scale = 2 ** i
|
78 |
-
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
|
79 |
-
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
|
80 |
-
break
|
81 |
-
|
82 |
-
assert temp_size is not None, "temp_size cannot is None"
|
83 |
-
|
84 |
-
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
85 |
-
|
86 |
-
attn_map = F.interpolate(
|
87 |
-
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
88 |
-
size=target_size,
|
89 |
-
mode='bilinear',
|
90 |
-
align_corners=False
|
91 |
-
)[0]
|
92 |
-
|
93 |
-
attn_map = torch.softmax(attn_map, dim=0)
|
94 |
-
return attn_map
|
95 |
-
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
96 |
-
|
97 |
-
idx = 0 if instance_or_negative else 1
|
98 |
-
net_attn_maps = []
|
99 |
-
|
100 |
-
for name, attn_map in attn_maps.items():
|
101 |
-
attn_map = attn_map.cpu() if detach else attn_map
|
102 |
-
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
|
103 |
-
attn_map = upscale(attn_map, image_size)
|
104 |
-
net_attn_maps.append(attn_map)
|
105 |
-
|
106 |
-
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
107 |
-
|
108 |
-
return net_attn_maps
|
109 |
-
|
110 |
-
def attnmaps2images(net_attn_maps):
|
111 |
-
|
112 |
-
#total_attn_scores = 0
|
113 |
-
images = []
|
114 |
-
|
115 |
-
for attn_map in net_attn_maps:
|
116 |
-
attn_map = attn_map.cpu().numpy()
|
117 |
-
#total_attn_scores += attn_map.mean().item()
|
118 |
-
|
119 |
-
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
120 |
-
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
121 |
-
#print("norm: ", normalized_attn_map.shape)
|
122 |
-
image = Image.fromarray(normalized_attn_map)
|
123 |
-
|
124 |
-
#image = fix_save_attn_map(attn_map)
|
125 |
-
images.append(image)
|
126 |
-
|
127 |
-
#print(total_attn_scores)
|
128 |
-
return images
|
129 |
-
def is_torch2_available():
|
130 |
-
return hasattr(F, "scaled_dot_product_attention")
|
131 |
-
|
132 |
-
def get_generator(seed, device):
|
133 |
-
|
134 |
-
if seed is not None:
|
135 |
-
if isinstance(seed, list):
|
136 |
-
generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
|
137 |
-
else:
|
138 |
-
generator = torch.Generator(device).manual_seed(seed)
|
139 |
-
else:
|
140 |
-
generator = None
|
141 |
-
|
142 |
-
return generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/resampler.py
DELETED
@@ -1,158 +0,0 @@
|
|
1 |
-
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
-
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
|
3 |
-
|
4 |
-
import math
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
from einops import rearrange
|
9 |
-
from einops.layers.torch import Rearrange
|
10 |
-
|
11 |
-
|
12 |
-
# FFN
|
13 |
-
def FeedForward(dim, mult=4):
|
14 |
-
inner_dim = int(dim * mult)
|
15 |
-
return nn.Sequential(
|
16 |
-
nn.LayerNorm(dim),
|
17 |
-
nn.Linear(dim, inner_dim, bias=False),
|
18 |
-
nn.GELU(),
|
19 |
-
nn.Linear(inner_dim, dim, bias=False),
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
def reshape_tensor(x, heads):
|
24 |
-
bs, length, width = x.shape
|
25 |
-
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
26 |
-
x = x.view(bs, length, heads, -1)
|
27 |
-
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
28 |
-
x = x.transpose(1, 2)
|
29 |
-
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
30 |
-
x = x.reshape(bs, heads, length, -1)
|
31 |
-
return x
|
32 |
-
|
33 |
-
|
34 |
-
class PerceiverAttention(nn.Module):
|
35 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
36 |
-
super().__init__()
|
37 |
-
self.scale = dim_head**-0.5
|
38 |
-
self.dim_head = dim_head
|
39 |
-
self.heads = heads
|
40 |
-
inner_dim = dim_head * heads
|
41 |
-
|
42 |
-
self.norm1 = nn.LayerNorm(dim)
|
43 |
-
self.norm2 = nn.LayerNorm(dim)
|
44 |
-
|
45 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
47 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
48 |
-
|
49 |
-
def forward(self, x, latents):
|
50 |
-
"""
|
51 |
-
Args:
|
52 |
-
x (torch.Tensor): image features
|
53 |
-
shape (b, n1, D)
|
54 |
-
latent (torch.Tensor): latent features
|
55 |
-
shape (b, n2, D)
|
56 |
-
"""
|
57 |
-
x = self.norm1(x)
|
58 |
-
latents = self.norm2(latents)
|
59 |
-
|
60 |
-
b, l, _ = latents.shape
|
61 |
-
|
62 |
-
q = self.to_q(latents)
|
63 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
64 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
65 |
-
|
66 |
-
q = reshape_tensor(q, self.heads)
|
67 |
-
k = reshape_tensor(k, self.heads)
|
68 |
-
v = reshape_tensor(v, self.heads)
|
69 |
-
|
70 |
-
# attention
|
71 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
72 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
73 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
74 |
-
out = weight @ v
|
75 |
-
|
76 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
77 |
-
|
78 |
-
return self.to_out(out)
|
79 |
-
|
80 |
-
|
81 |
-
class Resampler(nn.Module):
|
82 |
-
def __init__(
|
83 |
-
self,
|
84 |
-
dim=1024,
|
85 |
-
depth=8,
|
86 |
-
dim_head=64,
|
87 |
-
heads=16,
|
88 |
-
num_queries=8,
|
89 |
-
embedding_dim=768,
|
90 |
-
output_dim=1024,
|
91 |
-
ff_mult=4,
|
92 |
-
max_seq_len: int = 257, # CLIP tokens + CLS token
|
93 |
-
apply_pos_emb: bool = False,
|
94 |
-
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
95 |
-
):
|
96 |
-
super().__init__()
|
97 |
-
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
98 |
-
|
99 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
100 |
-
|
101 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
102 |
-
|
103 |
-
self.proj_out = nn.Linear(dim, output_dim)
|
104 |
-
self.norm_out = nn.LayerNorm(output_dim)
|
105 |
-
|
106 |
-
self.to_latents_from_mean_pooled_seq = (
|
107 |
-
nn.Sequential(
|
108 |
-
nn.LayerNorm(dim),
|
109 |
-
nn.Linear(dim, dim * num_latents_mean_pooled),
|
110 |
-
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
111 |
-
)
|
112 |
-
if num_latents_mean_pooled > 0
|
113 |
-
else None
|
114 |
-
)
|
115 |
-
|
116 |
-
self.layers = nn.ModuleList([])
|
117 |
-
for _ in range(depth):
|
118 |
-
self.layers.append(
|
119 |
-
nn.ModuleList(
|
120 |
-
[
|
121 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
122 |
-
FeedForward(dim=dim, mult=ff_mult),
|
123 |
-
]
|
124 |
-
)
|
125 |
-
)
|
126 |
-
|
127 |
-
def forward(self, x):
|
128 |
-
if self.pos_emb is not None:
|
129 |
-
n, device = x.shape[1], x.device
|
130 |
-
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
131 |
-
x = x + pos_emb
|
132 |
-
|
133 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
134 |
-
|
135 |
-
x = self.proj_in(x)
|
136 |
-
|
137 |
-
if self.to_latents_from_mean_pooled_seq:
|
138 |
-
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
|
139 |
-
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
140 |
-
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
141 |
-
|
142 |
-
for attn, ff in self.layers:
|
143 |
-
latents = attn(x, latents) + latents
|
144 |
-
latents = ff(latents) + latents
|
145 |
-
|
146 |
-
latents = self.proj_out(latents)
|
147 |
-
return self.norm_out(latents)
|
148 |
-
|
149 |
-
|
150 |
-
def masked_mean(t, *, dim, mask=None):
|
151 |
-
if mask is None:
|
152 |
-
return t.mean(dim=dim)
|
153 |
-
|
154 |
-
denom = mask.sum(dim=dim, keepdim=True)
|
155 |
-
mask = rearrange(mask, "b n -> b n 1")
|
156 |
-
masked_t = t.masked_fill(~mask, 0.0)
|
157 |
-
|
158 |
-
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/utils.py
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
-
BLOCKS = {
|
7 |
-
'content': ['down_blocks'],
|
8 |
-
'style': ["up_blocks"],
|
9 |
-
|
10 |
-
}
|
11 |
-
|
12 |
-
controlnet_BLOCKS = {
|
13 |
-
'content': [],
|
14 |
-
'style': ["down_blocks"],
|
15 |
-
}
|
16 |
-
|
17 |
-
|
18 |
-
def resize_width_height(width, height, min_short_side=512, max_long_side=1024):
|
19 |
-
|
20 |
-
if width < height:
|
21 |
-
|
22 |
-
if width < min_short_side:
|
23 |
-
scale_factor = min_short_side / width
|
24 |
-
new_width = min_short_side
|
25 |
-
new_height = int(height * scale_factor)
|
26 |
-
else:
|
27 |
-
new_width, new_height = width, height
|
28 |
-
else:
|
29 |
-
|
30 |
-
if height < min_short_side:
|
31 |
-
scale_factor = min_short_side / height
|
32 |
-
new_width = int(width * scale_factor)
|
33 |
-
new_height = min_short_side
|
34 |
-
else:
|
35 |
-
new_width, new_height = width, height
|
36 |
-
|
37 |
-
if max(new_width, new_height) > max_long_side:
|
38 |
-
scale_factor = max_long_side / max(new_width, new_height)
|
39 |
-
new_width = int(new_width * scale_factor)
|
40 |
-
new_height = int(new_height * scale_factor)
|
41 |
-
return new_width, new_height
|
42 |
-
|
43 |
-
def resize_content(content_image):
|
44 |
-
max_long_side = 1024
|
45 |
-
min_short_side = 1024
|
46 |
-
|
47 |
-
new_width, new_height = resize_width_height(content_image.size[0], content_image.size[1],
|
48 |
-
min_short_side=min_short_side, max_long_side=max_long_side)
|
49 |
-
height = new_height // 16 * 16
|
50 |
-
width = new_width // 16 * 16
|
51 |
-
content_image = content_image.resize((width, height))
|
52 |
-
|
53 |
-
return width,height,content_image
|
54 |
-
|
55 |
-
attn_maps = {}
|
56 |
-
def hook_fn(name):
|
57 |
-
def forward_hook(module, input, output):
|
58 |
-
if hasattr(module.processor, "attn_map"):
|
59 |
-
attn_maps[name] = module.processor.attn_map
|
60 |
-
del module.processor.attn_map
|
61 |
-
|
62 |
-
return forward_hook
|
63 |
-
|
64 |
-
def register_cross_attention_hook(unet):
|
65 |
-
for name, module in unet.named_modules():
|
66 |
-
if name.split('.')[-1].startswith('attn2'):
|
67 |
-
module.register_forward_hook(hook_fn(name))
|
68 |
-
|
69 |
-
return unet
|
70 |
-
|
71 |
-
def upscale(attn_map, target_size):
|
72 |
-
attn_map = torch.mean(attn_map, dim=0)
|
73 |
-
attn_map = attn_map.permute(1,0)
|
74 |
-
temp_size = None
|
75 |
-
|
76 |
-
for i in range(0,5):
|
77 |
-
scale = 2 ** i
|
78 |
-
if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
|
79 |
-
temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
|
80 |
-
break
|
81 |
-
|
82 |
-
assert temp_size is not None, "temp_size cannot is None"
|
83 |
-
|
84 |
-
attn_map = attn_map.view(attn_map.shape[0], *temp_size)
|
85 |
-
|
86 |
-
attn_map = F.interpolate(
|
87 |
-
attn_map.unsqueeze(0).to(dtype=torch.float32),
|
88 |
-
size=target_size,
|
89 |
-
mode='bilinear',
|
90 |
-
align_corners=False
|
91 |
-
)[0]
|
92 |
-
|
93 |
-
attn_map = torch.softmax(attn_map, dim=0)
|
94 |
-
return attn_map
|
95 |
-
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
96 |
-
|
97 |
-
idx = 0 if instance_or_negative else 1
|
98 |
-
net_attn_maps = []
|
99 |
-
|
100 |
-
for name, attn_map in attn_maps.items():
|
101 |
-
attn_map = attn_map.cpu() if detach else attn_map
|
102 |
-
attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
|
103 |
-
attn_map = upscale(attn_map, image_size)
|
104 |
-
net_attn_maps.append(attn_map)
|
105 |
-
|
106 |
-
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
107 |
-
|
108 |
-
return net_attn_maps
|
109 |
-
|
110 |
-
def attnmaps2images(net_attn_maps):
|
111 |
-
|
112 |
-
#total_attn_scores = 0
|
113 |
-
images = []
|
114 |
-
|
115 |
-
for attn_map in net_attn_maps:
|
116 |
-
attn_map = attn_map.cpu().numpy()
|
117 |
-
#total_attn_scores += attn_map.mean().item()
|
118 |
-
|
119 |
-
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
120 |
-
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
121 |
-
#print("norm: ", normalized_attn_map.shape)
|
122 |
-
image = Image.fromarray(normalized_attn_map)
|
123 |
-
|
124 |
-
#image = fix_save_attn_map(attn_map)
|
125 |
-
images.append(image)
|
126 |
-
|
127 |
-
#print(total_attn_scores)
|
128 |
-
return images
|
129 |
-
def is_torch2_available():
|
130 |
-
return hasattr(F, "scaled_dot_product_attention")
|
131 |
-
|
132 |
-
def get_generator(seed, device):
|
133 |
-
|
134 |
-
if seed is not None:
|
135 |
-
if isinstance(seed, list):
|
136 |
-
generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
|
137 |
-
else:
|
138 |
-
generator = torch.Generator(device).manual_seed(seed)
|
139 |
-
else:
|
140 |
-
generator = None
|
141 |
-
|
142 |
-
return generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|