Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- app.py +109 -0
- requirements.txt +3 -0
- samples/cat.jpg +0 -0
- samples/cats.jpg +0 -0
- samples/detectron2.png +0 -0
- samples/hotdog.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib.patches as patches
|
9 |
+
|
10 |
+
from random import choice
|
11 |
+
import io
|
12 |
+
|
13 |
+
detector50 = pipeline(model="facebook/detr-resnet-50")
|
14 |
+
|
15 |
+
detector101 = pipeline(model="facebook/detr-resnet-101")
|
16 |
+
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
21 |
+
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
22 |
+
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
23 |
+
|
24 |
+
fdic = {
|
25 |
+
"family" : "Impact",
|
26 |
+
"style" : "italic",
|
27 |
+
"size" : 15,
|
28 |
+
"color" : "yellow",
|
29 |
+
"weight" : "bold"
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
def get_figure(in_pil_img, in_results):
|
34 |
+
plt.figure(figsize=(16, 10))
|
35 |
+
plt.imshow(in_pil_img)
|
36 |
+
#pyplot.gcf()
|
37 |
+
ax = plt.gca()
|
38 |
+
|
39 |
+
for prediction in in_results:
|
40 |
+
selected_color = choice(COLORS)
|
41 |
+
|
42 |
+
x, y = prediction['box']['xmin'], prediction['box']['ymin'],
|
43 |
+
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
|
44 |
+
|
45 |
+
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
46 |
+
ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
|
47 |
+
|
48 |
+
plt.axis("off")
|
49 |
+
|
50 |
+
return plt.gcf()
|
51 |
+
|
52 |
+
|
53 |
+
def infer(model, in_pil_img):
|
54 |
+
|
55 |
+
results = None
|
56 |
+
if model == "detr-resnet-101":
|
57 |
+
results = detector101(in_pil_img)
|
58 |
+
else:
|
59 |
+
results = detector50(in_pil_img)
|
60 |
+
|
61 |
+
figure = get_figure(in_pil_img, results)
|
62 |
+
|
63 |
+
buf = io.BytesIO()
|
64 |
+
figure.savefig(buf, bbox_inches='tight')
|
65 |
+
buf.seek(0)
|
66 |
+
output_pil_img = Image.open(buf)
|
67 |
+
|
68 |
+
return output_pil_img
|
69 |
+
|
70 |
+
|
71 |
+
with gr.Blocks(title="DETR Object Detection - ClassCat",
|
72 |
+
css=".gradio-container {background:lightyellow;}"
|
73 |
+
) as demo:
|
74 |
+
#sample_index = gr.State([])
|
75 |
+
|
76 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">DETR Object Detection</div>""")
|
77 |
+
|
78 |
+
gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""")
|
79 |
+
|
80 |
+
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name")
|
81 |
+
|
82 |
+
gr.HTML("""<br/>""")
|
83 |
+
gr.HTML("""<h4 style="color:navy;">2-a. Select an example by clicking a thumbnail below.</h4>""")
|
84 |
+
gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
input_image = gr.Image(label="Input image", type="pil")
|
88 |
+
output_image = gr.Image(label="Output image with predicted instances", type="pil")
|
89 |
+
|
90 |
+
gr.Examples(['samples/cats.jpg', 'samples/detectron2.png', 'samples/cat.jpg', 'samples/hotdog.jpg'], inputs=input_image)
|
91 |
+
|
92 |
+
gr.HTML("""<br/>""")
|
93 |
+
gr.HTML("""<h4 style="color:navy;">3. Then, click "Infer" button to predict object instances. It will take about 10 seconds (on cpu)</h4>""")
|
94 |
+
|
95 |
+
send_btn = gr.Button("Infer")
|
96 |
+
send_btn.click(fn=infer, inputs=[model, input_image], outputs=[output_image])
|
97 |
+
|
98 |
+
gr.HTML("""<br/>""")
|
99 |
+
gr.HTML("""<h4 style="color:navy;">Reference</h4>""")
|
100 |
+
gr.HTML("""<ul>""")
|
101 |
+
gr.HTML("""<li><a href="https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb" target="_blank">Hands-on tutorial for DETR</a>""")
|
102 |
+
gr.HTML("""</ul>""")
|
103 |
+
|
104 |
+
|
105 |
+
#demo.queue()
|
106 |
+
demo.launch(debug=True)
|
107 |
+
|
108 |
+
|
109 |
+
### EOF ###
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers[timm]
|
3 |
+
matplotlib
|
samples/cat.jpg
ADDED
samples/cats.jpg
ADDED
samples/detectron2.png
ADDED
samples/hotdog.jpg
ADDED