Spaces:
Sleeping
Sleeping
File size: 4,282 Bytes
faca43f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import {
PARQUET_EXPORT_DATASET,
PARQUET_EXPORT_HF_TOKEN,
PARQUET_EXPORT_SECRET,
} from "$env/static/private";
import { collections } from "$lib/server/database";
import type { Message } from "$lib/types/Message";
import { error } from "@sveltejs/kit";
import { pathToFileURL } from "node:url";
import { unlink } from "node:fs/promises";
import { uploadFile } from "@huggingface/hub";
import parquet from "parquetjs";
import { z } from "zod";
// Triger like this:
// curl -X POST "http://localhost:5173/chat/admin/export" -H "Authorization: Bearer <PARQUET_EXPORT_SECRET>" -H "Content-Type: application/json" -d '{"model": "OpenAssistant/oasst-sft-6-llama-30b-xor"}'
export async function POST({ request }) {
if (!PARQUET_EXPORT_SECRET || !PARQUET_EXPORT_DATASET || !PARQUET_EXPORT_HF_TOKEN) {
throw error(500, "Parquet export is not configured.");
}
if (request.headers.get("Authorization") !== `Bearer ${PARQUET_EXPORT_SECRET}`) {
throw error(403);
}
const { model } = z
.object({
model: z.string(),
})
.parse(await request.json());
const schema = new parquet.ParquetSchema({
title: { type: "UTF8" },
created_at: { type: "TIMESTAMP_MILLIS" },
updated_at: { type: "TIMESTAMP_MILLIS" },
messages: {
repeated: true,
fields: {
from: { type: "UTF8" },
content: { type: "UTF8" },
score: { type: "INT_8", optional: true },
},
},
});
const fileName = `/tmp/conversations-${new Date().toJSON().slice(0, 10)}-${Date.now()}.parquet`;
const writer = await parquet.ParquetWriter.openFile(schema, fileName);
let count = 0;
console.log("Exporting conversations for model", model);
for await (const conversation of collections.settings.aggregate<{
title: string;
created_at: Date;
updated_at: Date;
messages: Message[];
}>([
{
$match: {
shareConversationsWithModelAuthors: true,
sessionId: { $exists: true },
userId: { $exists: false },
},
},
{
$lookup: {
from: "conversations",
localField: "sessionId",
foreignField: "sessionId",
as: "conversations",
pipeline: [{ $match: { model, userId: { $exists: false } } }],
},
},
{ $unwind: "$conversations" },
{
$project: {
title: "$conversations.title",
created_at: "$conversations.createdAt",
updated_at: "$conversations.updatedAt",
messages: "$conversations.messages",
},
},
])) {
await writer.appendRow({
title: conversation.title,
created_at: conversation.created_at,
updated_at: conversation.updated_at,
messages: conversation.messages.map((message: Message) => ({
from: message.from,
content: message.content,
...(message.score ? { score: message.score } : undefined),
})),
});
++count;
if (count % 1_000 === 0) {
console.log("Exported", count, "conversations");
}
}
console.log("exporting convos with userId");
for await (const conversation of collections.settings.aggregate<{
title: string;
created_at: Date;
updated_at: Date;
messages: Message[];
}>([
{ $match: { shareConversationsWithModelAuthors: true, userId: { $exists: true } } },
{
$lookup: {
from: "conversations",
localField: "userId",
foreignField: "userId",
as: "conversations",
pipeline: [{ $match: { model } }],
},
},
{ $unwind: "$conversations" },
{
$project: {
title: "$conversations.title",
created_at: "$conversations.createdAt",
updated_at: "$conversations.updatedAt",
messages: "$conversations.messages",
},
},
])) {
await writer.appendRow({
title: conversation.title,
created_at: conversation.created_at,
updated_at: conversation.updated_at,
messages: conversation.messages.map((message: Message) => ({
from: message.from,
content: message.content,
...(message.score ? { score: message.score } : undefined),
})),
});
++count;
if (count % 1_000 === 0) {
console.log("Exported", count, "conversations");
}
}
await writer.close();
console.log("Uploading", fileName, "to Hugging Face Hub");
await uploadFile({
file: pathToFileURL(fileName),
credentials: { accessToken: PARQUET_EXPORT_HF_TOKEN },
repo: {
type: "dataset",
name: PARQUET_EXPORT_DATASET,
},
});
console.log("Upload done");
await unlink(fileName);
return new Response();
}
|