nroggendorff commited on
Commit
350a18d
1 Parent(s): f2aa102

Delete safety_checker.py

Browse files
Files changed (1) hide show
  1. safety_checker.py +0 -137
safety_checker.py DELETED
@@ -1,137 +0,0 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import numpy as np
16
- import torch
17
- import torch.nn as nn
18
- from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
19
-
20
-
21
- def cosine_distance(image_embeds, text_embeds):
22
- normalized_image_embeds = nn.functional.normalize(image_embeds)
23
- normalized_text_embeds = nn.functional.normalize(text_embeds)
24
- return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
25
-
26
-
27
- class StableDiffusionSafetyChecker(PreTrainedModel):
28
- config_class = CLIPConfig
29
-
30
- _no_split_modules = ["CLIPEncoderLayer"]
31
-
32
- def __init__(self, config: CLIPConfig):
33
- super().__init__(config)
34
-
35
- self.vision_model = CLIPVisionModel(config.vision_config)
36
- self.visual_projection = nn.Linear(
37
- config.vision_config.hidden_size, config.projection_dim, bias=False
38
- )
39
-
40
- self.concept_embeds = nn.Parameter(
41
- torch.ones(17, config.projection_dim), requires_grad=False
42
- )
43
- self.special_care_embeds = nn.Parameter(
44
- torch.ones(3, config.projection_dim), requires_grad=False
45
- )
46
-
47
- self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
48
- self.special_care_embeds_weights = nn.Parameter(
49
- torch.ones(3), requires_grad=False
50
- )
51
-
52
- @torch.no_grad()
53
- def forward(self, clip_input, images):
54
- pooled_output = self.vision_model(clip_input)[1] # pooled_output
55
- image_embeds = self.visual_projection(pooled_output)
56
-
57
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
58
- special_cos_dist = (
59
- cosine_distance(image_embeds, self.special_care_embeds)
60
- .cpu()
61
- .float()
62
- .numpy()
63
- )
64
- cos_dist = (
65
- cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
66
- )
67
-
68
- result = []
69
- batch_size = image_embeds.shape[0]
70
- for i in range(batch_size):
71
- result_img = {
72
- "special_scores": {},
73
- "special_care": [],
74
- "concept_scores": {},
75
- "bad_concepts": [],
76
- }
77
-
78
- # increase this value to create a stronger `nfsw` filter
79
- # at the cost of increasing the possibility of filtering benign images
80
- adjustment = 0.0
81
-
82
- for concept_idx in range(len(special_cos_dist[0])):
83
- concept_cos = special_cos_dist[i][concept_idx]
84
- concept_threshold = self.special_care_embeds_weights[concept_idx].item()
85
- result_img["special_scores"][concept_idx] = round(
86
- concept_cos - concept_threshold + adjustment, 3
87
- )
88
- if result_img["special_scores"][concept_idx] > 0:
89
- result_img["special_care"].append(
90
- {concept_idx, result_img["special_scores"][concept_idx]}
91
- )
92
- adjustment = 0.01
93
-
94
- for concept_idx in range(len(cos_dist[0])):
95
- concept_cos = cos_dist[i][concept_idx]
96
- concept_threshold = self.concept_embeds_weights[concept_idx].item()
97
- result_img["concept_scores"][concept_idx] = round(
98
- concept_cos - concept_threshold + adjustment, 3
99
- )
100
- if result_img["concept_scores"][concept_idx] > 0:
101
- result_img["bad_concepts"].append(concept_idx)
102
-
103
- result.append(result_img)
104
-
105
- has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
106
-
107
- return has_nsfw_concepts
108
-
109
- @torch.no_grad()
110
- def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
111
- pooled_output = self.vision_model(clip_input)[1] # pooled_output
112
- image_embeds = self.visual_projection(pooled_output)
113
-
114
- special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
115
- cos_dist = cosine_distance(image_embeds, self.concept_embeds)
116
-
117
- # increase this value to create a stronger `nsfw` filter
118
- # at the cost of increasing the possibility of filtering benign images
119
- adjustment = 0.0
120
-
121
- special_scores = (
122
- special_cos_dist - self.special_care_embeds_weights + adjustment
123
- )
124
- # special_scores = special_scores.round(decimals=3)
125
- special_care = torch.any(special_scores > 0, dim=1)
126
- special_adjustment = special_care * 0.01
127
- special_adjustment = special_adjustment.unsqueeze(1).expand(
128
- -1, cos_dist.shape[1]
129
- )
130
-
131
- concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
132
- # concept_scores = concept_scores.round(decimals=3)
133
- has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
134
-
135
- images[has_nsfw_concepts] = 0.0 # black image
136
-
137
- return images, has_nsfw_concepts