import base64 import json import time from types import SimpleNamespace # import spaces import gradio as gr import os import sys import yaml sys.path.insert(0, './') # from wenet.utils.init_tokenizer import init_tokenizer # from wenet.utils.init_model import init_model import logging # import librosa # import torch # import torchaudio import numpy as np def makedir_for_file(filepath): dirpath = os.path.dirname(filepath) if not os.path.exists(dirpath): os.makedirs(dirpath) def load_dict_from_yaml(file_path: str): with open(file_path, 'rt', encoding='utf-8') as f: dict_1 = yaml.load(f, Loader=yaml.FullLoader) return dict_1 # 获取当前脚本文件的绝对路径 abs_path = os.path.abspath(__file__) # 将图片转换为 Base64 with open(os.path.join(os.path.dirname(abs_path), "lab.png"), "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode("utf-8") # with open("./cat.jpg", "rb") as image_file: # encoded_string = base64.b64encode(image_file.read()).decode("utf-8") # 自定义CSS样式 custom_css = """ /* 自定义CSS样式 */ """ # 任务提示映射 TASK_PROMPT_MAPPING = { "ASR (Automatic Speech Recognition)": "执行语音识别任务,将音频转换为文字。", "SRWT (Speech Recognition with Timestamps)": "请转录音频内容,并为每个英文词汇及其对应的中文翻译标注出精确到0.1秒的起止时间,时间范围用<>括起来。", "VED (Vocal Event Detection)(Categories:laugh,cough,cry,screaming,sigh,throat clearing,sneeze,other)": "请将音频转录为文字记录,并在记录末尾标注<音频事件>标签,音频事件共8种:laugh,cough,cry,screaming,sigh,throat clearing,sneeze,other。", "SER (Speech Emotion Recognition)(Categories:sad,anger,neutral,happy,surprise,fear,disgust,和other)": "请将音频内容转录成文字记录,并在记录末尾标注<情感>标签,情感共8种:sad,anger,neutral,happy,surprise,fear,disgust,和other。", "SSR (Speaking Style Recognition)(Categories:新闻科普,恐怖故事,童话故事,客服,诗歌散文,有声书,日常口语,其他)": "请将音频内容进行文字转录,并在最后添加<风格>标签,标签共8种:新闻科普、恐怖故事、童话故事、客服、诗歌散文、有声书、日常口语、其他。", "SGC (Speaker Gender Classification)(Categories:female,male)": "请将音频转录为文本,并在文本结尾处标注<性别>标签,性别为female或male。", "SAP (Speaker Age Prediction)(Categories:child、adult和old)": "请将音频转录为文本,并在文本结尾处标注<年龄>标签,年龄划分为child、adult和old三种。", "STTC (Speech to Text Chat)": "首先将语音转录为文字,然后对语音内容进行回复,转录和文字之间使用<开始回答>分割。" } def init_model_my(): logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') config_path = "train.yaml" from huggingface_hub import hf_hub_download # 从Hugging Face下载.pt文件 pt_file_path = hf_hub_download(repo_id="ASLP-lab/OSUM", filename="infer.pt") args = SimpleNamespace(**{ "checkpoint": pt_file_path, }) configs = load_dict_from_yaml(config_path) model, configs = init_model(args, configs) model = model.cuda() tokenizer = init_tokenizer(configs) print(model) return model, tokenizer # global_model, tokenizer = init_model_my() print("model init success") def do_resample(input_wav_path, output_wav_path): """""" print(f'input_wav_path: {input_wav_path}, output_wav_path: {output_wav_path}') waveform, sample_rate = torchaudio.load(input_wav_path) # 检查音频的维度 num_channels = waveform.shape[0] # 如果音频是多通道的,则进行通道平均 if num_channels > 1: waveform = torch.mean(waveform, dim=0, keepdim=True) waveform = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=16000)(waveform) makedir_for_file(output_wav_path) torchaudio.save(output_wav_path, waveform, 16000) # @spaces.GPU def true_decode_fuc(input_wav_path, input_prompt): # input_prompt = TASK_PROMPT_MAPPING.get(input_prompt, "未知任务类型") print(f"wav_path: {input_wav_path}, prompt:{input_prompt}") timestamp_ms = int(time.time() * 1000) now_file_tmp_path_resample = f'/home/xlgeng/.cache/.temp/{timestamp_ms}_resample.wav' do_resample(input_wav_path, now_file_tmp_path_resample) input_wav_path = now_file_tmp_path_resample waveform, sample_rate = torchaudio.load(input_wav_path) waveform = waveform.squeeze(0) # (channel=1, sample) -> (sample,) print(f'wavform shape: {waveform.shape}, sample_rate: {sample_rate}') window = torch.hann_window(400) stft = torch.stft(waveform, 400, 160, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 filters = torch.from_numpy( librosa.filters.mel(sr=sample_rate, n_fft=400, n_mels=80)) mel_spec = filters @ magnitudes # NOTE(xcsong): https://github.com/openai/whisper/discussions/269 log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 feat = log_spec.transpose(0, 1) feat_lens = torch.tensor([feat.shape[0]], dtype=torch.int64).cuda() feat = feat.unsqueeze(0).cuda() # feat = feat.half() # feat_lens = feat_lens.half() model = global_model.cuda() model.eval() res_text = model.generate(wavs=feat, wavs_len=feat_lens, prompt=input_prompt)[0] print("耿雪龙哈哈:", res_text) return res_text def do_decode(input_wav_path, input_prompt): print(f'input_wav_path= {input_wav_path}, input_prompt= {input_prompt}') # 省略处理逻辑 # output_res= true_decode_fuc(input_wav_path, input_prompt) output_res = f"耿雪龙哈哈:测试结果, input_wav_path= {input_wav_path}, input_prompt= {input_prompt}" return output_res def save_to_jsonl(if_correct, wav, prompt, res): data = { "if_correct": if_correct, "wav": wav, "task": prompt, "res": res } with open("results.jsonl", "a", encoding="utf-8") as f: f.write(json.dumps(data, ensure_ascii=False) + "\n") def handle_submit(input_wav_path, input_prompt): output_res = do_decode(input_wav_path, input_prompt) return output_res def download_audio(input_wav_path): if input_wav_path: # 返回文件路径供下载 return input_wav_path else: return None # 自定义 CSS 样式 CSS = """ .custom-footer { position: fixed; bottom: 20px; /* 距离页面底部的距离 */ left: 50%; transform: translateX(-50%); display: flex; align-items: center; justify-content: center; gap: 20px; text-align: center; font-weight: bold; padding-bottom: 20px; /* 在底部添加额外的间距 */ } .custom-footer p { margin: 0; } .custom-footer img { height: 80px; width: auto; } """ # 创建 Gradio 界面 with gr.Blocks(css=CSS) as demo: # 添加标题 gr.Markdown( """

OSUM Speech Understanding Model Test

""" ) # 添加音频输入和任务选择 with gr.Row(): with gr.Column(scale=1): audio_input = gr.Audio(label="Record", type="filepath") with gr.Column(scale=1, min_width=300): output_text = gr.Textbox(label="Output", lines=8, placeholder="The generated result will be displayed here...", interactive=False) # 添加任务选择和自定义输入框 with gr.Row(): task_dropdown = gr.Dropdown( label="Task", choices=list(TASK_PROMPT_MAPPING.keys()) + ["Custom Task Prompt"], value="ASR (Automatic Speech Recognition)" ) custom_prompt_input = gr.Textbox(label="Custom Task Prompt", placeholder="Please enter a custom task prompt...", visible=False) # 添加按钮(下载按钮在左边,开始处理按钮在右边) with gr.Row(): download_button = gr.DownloadButton("Download Recording", variant="secondary", elem_classes=["button-height", "download-button"]) submit_button = gr.Button("Start to Process", variant="primary", elem_classes=["button-height", "submit-button"]) # 添加确认组件 with gr.Row(visible=False) as confirmation_row: gr.Markdown("Please determine whether the result is correct:") confirmation_buttons = gr.Radio( choices=["Correct", "Incorrect"], label="", interactive=True, container=False, elem_classes="confirmation-buttons" ) save_button = gr.Button("Submit Feedback", variant="secondary") # 添加底部内容 gr.HTML( f""" """ ) # 绑定事件 def show_confirmation(output_res, input_wav_path, input_prompt): return gr.update(visible=True), output_res, input_wav_path, input_prompt def save_result(if_correct, wav, prompt, res): save_to_jsonl(if_correct, wav, prompt, res) return gr.update(visible=False) def handle_submit(input_wav_path, task_choice, custom_prompt): try: if task_choice == "Custom Task Prompt": input_prompt = custom_prompt else: input_prompt = TASK_PROMPT_MAPPING.get(task_choice, "未知任务类型") output_res = do_decode(input_wav_path, input_prompt) return output_res except Exception as e: print(f"Error in handle_submit: {e}") return "Error occurred. Please check the input." # 当任务选择框的值发生变化时,更新自定义输入框的可见性 task_dropdown.change( fn=lambda choice: gr.update(visible=choice == "Custom Task Prompt"), inputs=task_dropdown, outputs=custom_prompt_input ) submit_button.click( fn=handle_submit, inputs=[audio_input, task_dropdown, custom_prompt_input], outputs=output_text ).then( fn=show_confirmation, inputs=[output_text, audio_input, task_dropdown], outputs=[confirmation_row, output_text, audio_input, task_dropdown] ) download_button.click( fn=download_audio, inputs=[audio_input], outputs=[download_button] ) save_button.click( fn=save_result, inputs=[confirmation_buttons, audio_input, task_dropdown, output_text], outputs=confirmation_row ) if __name__ == "__main__": demo.launch()