Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import streamlit as st
|
2 |
-
import requests
|
3 |
import torch
|
4 |
from transformers import pipeline
|
5 |
from transformers import BartTokenizer, BartForConditionalGeneration
|
@@ -12,23 +11,38 @@ model = BartForConditionalGeneration.from_pretrained(model_repo_path)
|
|
12 |
tokenizer = BartTokenizer.from_pretrained(model_repo_path)
|
13 |
|
14 |
# Initialize the summarization pipeline
|
15 |
-
summarizer = pipeline('summarization', model=model,tokenizer=tokenizer)
|
16 |
|
17 |
# Streamlit app layout
|
|
|
|
|
18 |
st.title("Text Summarization App")
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# User input
|
21 |
-
text_input = st.text_area("Enter text to summarize", height=300)
|
22 |
|
23 |
# Summarize the text
|
24 |
if st.button("Summarize"):
|
25 |
if text_input:
|
26 |
with st.spinner("Generating summary..."):
|
27 |
try:
|
|
|
28 |
summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False)
|
|
|
|
|
29 |
st.subheader("Summary")
|
30 |
st.write(summary[0]['summary_text'])
|
31 |
except Exception as e:
|
32 |
-
st.error(f"
|
33 |
else:
|
34 |
-
st.warning("Please enter some text to summarize.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import torch
|
3 |
from transformers import pipeline
|
4 |
from transformers import BartTokenizer, BartForConditionalGeneration
|
|
|
11 |
tokenizer = BartTokenizer.from_pretrained(model_repo_path)
|
12 |
|
13 |
# Initialize the summarization pipeline
|
14 |
+
summarizer = pipeline('summarization', model=model, tokenizer=tokenizer)
|
15 |
|
16 |
# Streamlit app layout
|
17 |
+
st.set_page_config(page_title="Text Summarization App", page_icon=":memo:", layout="wide")
|
18 |
+
|
19 |
st.title("Text Summarization App")
|
20 |
+
st.write("""
|
21 |
+
This app uses a fine-tuned BART model to generate summaries of your input text.
|
22 |
+
Enter the text you want to summarize in the box below and click "Summarize" to see the result.
|
23 |
+
""")
|
24 |
|
25 |
# User input
|
26 |
+
text_input = st.text_area("Enter text to summarize", height=300, placeholder="Paste your text here...")
|
27 |
|
28 |
# Summarize the text
|
29 |
if st.button("Summarize"):
|
30 |
if text_input:
|
31 |
with st.spinner("Generating summary..."):
|
32 |
try:
|
33 |
+
# Generate summary
|
34 |
summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False)
|
35 |
+
|
36 |
+
# Display summary
|
37 |
st.subheader("Summary")
|
38 |
st.write(summary[0]['summary_text'])
|
39 |
except Exception as e:
|
40 |
+
st.error(f"An error occurred during summarization: {e}")
|
41 |
else:
|
42 |
+
st.warning("Please enter some text to summarize.")
|
43 |
+
|
44 |
+
# Optional: Add a footer or additional information
|
45 |
+
st.markdown("""
|
46 |
+
---
|
47 |
+
Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face Transformers](https://huggingface.co/transformers/).
|
48 |
+
""")
|