ASaboor commited on
Commit
7565aef
·
verified ·
1 Parent(s): 02dce0c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -29
app.py CHANGED
@@ -1,35 +1,22 @@
1
-
2
  import streamlit as st
3
- import requests
4
- import torch
5
- from transformers import pipeline
6
- from transformers import BartTokenizer, BartForConditionalGeneration
7
-
8
- # Replace with your Hugging Face model repository path
9
- model_repo_path = 'ASaboor/Saboors_Bart_samsum'
10
-
11
- # Load the model and tokenizer
12
- model = BartForConditionalGeneration.from_pretrained(model_repo_path)
13
- tokenizer = BartTokenizer.from_pretrained(model_repo_path)
14
 
15
- # Initialize the summarization pipeline
16
- summarizer = pipeline('summarization', model=model,tokenizer=tokenizer)
 
 
17
 
18
- # Streamlit app layout
19
- st.title("Text Summarization App")
 
20
 
21
- # User input
22
- text_input = st.text_area("Enter text to summarize", height=300)
23
 
24
- # Summarize the text
25
  if st.button("Summarize"):
26
- if text_input:
27
- with st.spinner("Generating summary..."):
28
- try:
29
- summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False)
30
- st.subheader("Summary")
31
- st.write(summary[0]['summary_text'])
32
- except Exception as e:
33
- st.error(f"Error during summarization: {e}")
34
- else:
35
- st.warning("Please enter some text to summarize.")
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
 
 
 
 
 
 
 
 
 
 
3
 
4
+ # Load the model and tokenizer from Hugging Face Model Hub
5
+ model_name = "ASaboor/Saboors_Bart_samsum" # Ensure this is correct
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
8
 
9
+ # Streamlit App
10
+ st.title("Summarization App")
11
+ st.write("This app uses a fine-tuned model to summarize text.")
12
 
13
+ # Text input
14
+ text = st.text_area("Enter text to summarize")
15
 
16
+ # Summarize button
17
  if st.button("Summarize"):
18
+ inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
19
+ summary_ids = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
20
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
21
+ st.write("Summary:")
22
+ st.write(summary)