Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import GPT2Tokenizer, GPT2Model
|
3 |
+
|
4 |
+
# Load pre-trained GPT-2 model and tokenizer
|
5 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
6 |
+
model = GPT2Model.from_pretrained('gpt2')
|
7 |
+
|
8 |
+
# Create a text area for the user to input the topic
|
9 |
+
topic = st.text_area("Enter a topic to generate a blog post", height=275)
|
10 |
+
|
11 |
+
# Create sliders for the user to specify the max length, temperature, top-k, and top-p
|
12 |
+
max_length = st.sidebar.slider("Max Length", min_value=10, max_value=30)
|
13 |
+
temperature = st.sidebar.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
|
14 |
+
top_k = st.sidebar.slider("Top-k", min_value=0, max_value=5, value=0)
|
15 |
+
top_p = st.sidebar.slider("Top-p", min_value=0.0, max_value=1.0, step=0.05, value=0.9)
|
16 |
+
num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=5, value=1, step=1)
|
17 |
+
|
18 |
+
# Define a function to generate the blog post
|
19 |
+
def generate_blogpost(topic):
|
20 |
+
# Encode the topic using the tokenizer
|
21 |
+
encoded_input = tokenizer(topic, return_tensors='pt')
|
22 |
+
|
23 |
+
# Generate text using the model
|
24 |
+
output = model(**encoded_input)
|
25 |
+
generated_text = tokenizer.decode(output.last_hidden_state[:, 0, :], skip_special_tokens=True)
|
26 |
+
|
27 |
+
return generated_text
|
28 |
+
|
29 |
+
# Create a button to generate the blog post
|
30 |
+
if st.button("Generate Blog Post"):
|
31 |
+
generated_text = generate_blogpost(topic)
|
32 |
+
st.write(generated_text)
|