import streamlit as st from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load the GPT-2 model and tokenizer model_name = "gpt2" tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) # Streamlit app layout st.title("Blog Post Generator") topic = st.text_input("Enter a topic for your blog post:") if st.button("Generate Blog Post"): if topic: # Encode the input topic input_ids = tokenizer.encode(topic, return_tensors='pt') # Generate text output = model.generate(input_ids, max_length=500, num_return_sequences=1) # Decode the generated text blog_post = tokenizer.decode(output[0], skip_special_tokens=True) # Display the generated blog post st.subheader("Generated Blog Post:") st.write(blog_post) else: st.warning("Please enter a topic.")