File size: 1,564 Bytes
75c0510
99d8abc
75c0510
99d8abc
 
359eb40
99d8abc
359eb40
99d8abc
359eb40
99d8abc
359eb40
99d8abc
 
 
 
 
359eb40
 
99d8abc
75c0510
 
99d8abc
 
75c0510
99d8abc
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import streamlit as st
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer

def load_model(model_name):
    try:
        st.title('Trying to load tokenizer')
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        st.title('Tokenizer loaded, trying to load model')
        model = AutoModelForCausalLM.from_pretrained(model_name)
        st.title('Model loaded, initializing pipeline')
        generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
        st.title('Pipeline ready')
        return generator
    except Exception as e:
        st.error(f"Failed to load model {model_name}: {str(e)}")
        return None

# Using distilgpt2 as the model
model_name = "distilgpt2"
generator = load_model(model_name)

# User prompt input
if generator:  # Proceed only if the model is successfully loaded
    user_prompt = st.text_area("Enter your prompt here:")

    # Button to generate text
    if st.button('Generate'):
        if user_prompt:
            # Generate response
            try:
                response = generator(user_prompt, max_length=50, clean_up_tokenization_spaces=True)
                # Display the generated text
                st.text_area("Response:", value=response[0]['generated_text'], height=250, disabled=True)
            except Exception as e:
                st.error(f"Error generating response: {str(e)}")
        else:
            st.warning("Please enter a prompt.")
else:
    st.error("Model could not be loaded. Please ensure the model name is correct and try again.")