|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
|
|
st.title('Chest and Physical Limitations LLM Query') |
|
|
|
|
|
|
|
model_name = "Abbeite/chest_and_physical_limitations2" |
|
generator = pipeline('text-generation', model=model_name) |
|
|
|
|
|
user_prompt = st.text_area("Enter your prompt here:") |
|
|
|
|
|
if st.button('Generate'): |
|
if user_prompt: |
|
|
|
try: |
|
response = generator(user_prompt, max_length=50, clean_up_tokenization_spaces=True) |
|
|
|
st.text_area("Response:", value=response[0]['generated_text'], height=250, disabled=True) |
|
except Exception as e: |
|
st.error(f"Error generating response: {str(e)}") |
|
else: |
|
st.warning("Please enter a prompt.") |